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Abstract. We present a general theoretical framework for the formulation of the non-
linear electromechanics of polymeric and biological active media. The approach de-
veloped here is based on the additive decomposition of the Helmholtz free energy in
elastic and inelastic parts and on the multiplicative decomposition of the deformation
gradient in passive and active parts. We describe a thermodynamically sound scenario
that accounts for geometric and material nonlinearities. In view of numerical applica-
tions, we specialize the general approach to a particular material model accounting
for the behavior of fiber reinforced tissues. Specifically, we use the model to solve
via finite elements a uniaxial electromechanical problem dynamically activated by an
electrophysiological stimulus. Implications for nonlinear solid mechanics and compu-
tational electrophysiology are finally discussed.
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1 Introduction

Electro-elastic (EA) media are physical systems that are sensitive to the action of mechan-
ical forces and electric fields. When immersed in electric fields, EA systems deform spon-
taneously, and, when deformed by mechanical forces, they cause a change in the original
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configuration of electrostatic or electrodynamic fields. The variation of the assigned con-
figuration of the electric field lines triggered by the electromechanical coupling is called
mechanic-electric feedback (MEF). Typically, in EA systems deformations may induce a
change of the eventual initial isotropy of a body.

Historically, the most well known example of electro-elastic systems has been the
piezoelectric crystal. In linearized kinematics, it can be proved that an isotropic dielectric
immersed in an electric field develops polarization charges, inducing internal stresses
proportional to the square of the electric field [37]. A similar dynamics characterizes
piezoelectrics. The origin of the electromechanical coupling in piezoelectric materials
stems from a phase transition that breaks the symmetry, and that leads also to a sponta-
neous polarization. By this spontaneous polarization there is a linear coupling between
deformation and electric field [36, 44], so that MEF effects are enhanced. Piezoelectrics
manifest also the reverse feedback: imposed deformations induce an internal electric
field proportional to the magnitude of the deformations. A second important class of
materials where MEF is of relevance are electro-active polymers (EAP), that typically ex-
hibit changes in size or in shape when stimulated by an electric field [53]. Among the
recent literature addressing this class of materials, it is worth to mention contributions
concerning electro-visco elastic polymers [4, 5, 74], and proposing thermodynamic for-
mulations for electro-active synthetic materials [46].

The MEF effect is observed also in materials that are in focus in the present study, i.e.,
biological media with contractile properties, such as the heart, the intestines, and several
types of muscles. It is evident that biological systems undergo rather large deformations,
therefore the underlying biophysical dynamics cannot be described accurately by means
of the infinitesimal theory of elasticity. In particular, according to single cell and tissue
specimen measurements, during a normal heart beat myocytes change their length up
to 20% [50], i.e., in the typical range of finite deformations. According to the literature,
the mechanical properties of muscles have been mainly investigated at the macroscopic
scale via force-velocity relationships, following Hill’s model [30]. The complexity of the
electric fields and of the mechanics of the heart, however, requires to adopt a multiscale
perspective, since the cardiac contraction connects the global mechanical properties ob-
served at the organ scale [78] to the underlying subcellular dynamics [32].

The cardiac beating is the result of the propagation of electrical waves generated by
the sequential excitation of neighboring cells, located along specialized conductive struc-
tures that provide the spreading of the electric signal into the whole heart [35, 49, 57, 66].
In turn, the excitation of a cardiac cell is induced by the variation of the electric poten-
tial across the cell membrane. Changes in the electric potential are related in a nonlinear
manner to the transmembrane fluxes of various charged ions.

The basic features of the mechanical response of biological active tissues can be suffi-
ciently well described by hyperelastic models, disregarding in first approximation more
complicated effects related to viscosity, growth and remodeling. Since the ’80s, several
mathematical models of passive muscle and myocardium elasticity have been proposed,
including isotropic, transversely isotropic and, more recently, orthotropic models [31,39].


