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Abstract. It is well known that conventional edge elements in solving vector Maxwell’s
eigenvalue equations by the finite element method will lead to the presence of spuri-
ous zero eigenvalues. This problem has been addressed for the first order edge ele-
ment by Kikuchi by the mixed element method. Inspired by this approach, this paper
describes a higher order mixed spectral element method (mixed SEM) for the com-
putation of two-dimensional vector eigenvalue problem of Maxwell’s equations. It
utilizes Gauss-Lobatto-Legendre (GLL) polynomials as the basis functions in the finite-
element framework with a weak divergence condition. It is shown that this method
can suppress all spurious zero and nonzero modes and has spectral accuracy. A rig-
orous analysis of the convergence of the mixed SEM is presented, based on the higher
order edge element interpolation error estimates, which fully confirms the robustness
of our method. Numerical results are given for homogeneous, inhomogeneous, L-
shape, coaxial and dual-inner-conductor cavities to verify the merits of the proposed
method.
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1 Introduction

The computation of eigenvalues in Maxwell’s equations is of fundamental importance
in computational electromagnetics. Since nodal based finite element method was intro-
duced to electrical engineering by Silvester in 1969 [1], it has been shown that the nodal
based finite element method has several advantages in solving homogeneous waveg-
uide problems, but in solving inhomogeneous waveguide problems it yields spurious
modes with nonzero eigenvalues. Much effort has been made to reduce or eliminate
this unwanted numerical behavior due to the presence of spurious modes [2]. Rahman
and Winkler observed that spurious modes do not satisfy the zero divergence condition
on the electric or magnetic field and suggested a penalty function to enforce this condi-
tion [3–5]. Unfortunately, this method cannot eliminate the spurious modes completely
and leaves the user the task of selecting a suitable penalty function parameter.

The other approach to eliminating spurious modes in the finite element waveguide
problem is to find proper finite element approximation functions [2, 6–9]. It is now well-
known that employing H(curl;Ω)-conforming basis functions (also known as edge ele-
ments) for the electric field [7,8] can ensure the continuity of tangential field components
across an interface between different media, while leaving the normal field components
free to jump across such interfaces. With the edge element method there are no spurious
modes with nonzero eigenvalues, but the number of spurious modes with zero eigen-
value is equal to the number of nodal points inside the computational domain due to the
violation of Gauss’s law [10]. Therefore, in order to remove these zero eigenvalues, in
addition to using the proper finite element space, the divergence free property (Gauss’s
law) of the eigenfunction must be enforced. One such successful approach for computing
eigenvalues in waveguide problems is to employ H(curl;Ω)-conforming basis functions
to approximate the electric field while imposing the divergence-free condition through
the use of a Lagrange multiplier, as suggested by Kikuchi [14].

In the meantime, higher-order methods such as the spectral element method (SEM)
[18,19] have also been proposed to solve electromagnetic eigenvalue problems. But these
methods also suffer from the presence of spurious zero eigenvalues, even though these
methods have a high convergence rate. In this paper, we present the mixed spectral ele-
ment method (mixed SEM) by applying the divergence free equation in Kikuchi’s scheme
into the SEM, for which the preliminary results have been shown in [20]. In the SEM, the
basis functions are constructed by Gauss-Lobatto-Legendre (GLL) polynomials [18, 19].
The accuracy increases exponentially with increasing the order of GLL basis functions,
while the number of degrees of freedom increases slowly. The convergence of this higher-
order mixed SEM is proved under the stronger regularity assumptions based on the in-
terpolation estimates for GLL edge elements and the abstract spectral theory in mixed
form [10,11,13,23]. We apply this mixed spectral element method to the two-dimensional
vector Maxwell TEz eigenvalue problem and carry out numerical experiments on a ho-
mogeneous cavity, an inhomogeneous cavity, a L-shape singular cavity, a coaxial cavity
and a two PEC cavity to validate this method. The results show that the mixed spec-


