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Abstract. The method of fundamental solutions (MFS) is known as an effective bound-
ary meshless method. However, the formulation of the MFS results in a dense and
extremely ill-conditioned matrix. In this paper we investigate the MFS for solving
large-scale problems for the nonhomogeneous modified Helmholtz equation. The key
idea is to exploit the exponential decay of the fundamental solution of the modified
Helmholtz equation, and consider a sparse or diagonal matrix instead of the original
dense matrix. Hence, the homogeneous solution can be obtained efficiently and accu-
rately. A standard two-step solution process which consists of evaluating the particular
solution and the homogeneous solution is applied. Polyharmonic spline radial basis
functions are employed to evaluate the particular solution. Five numerical examples in
irregular domains and a large number of boundary collocation points are presented to
show the simplicity and effectiveness of our approach for solving large-scale problems.
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1 Introduction

One of the major advantages of boundary element methods (BEMs) over finite element
(FEM), finite difference (FDM) and finite volume methods (FVM) is their ability to trans-
form the domain integral into the boundary and thus avoid domain discretization which
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is often the most tedious and expensive part of the solution process. However, for inho-
mogeneous problems, domain integration is required in the formulation of BEMs which
takes away their main advantage. During the past two decades, much effort in the BEM
literature has been devoted to this issue with great success. The most notable schemes
in this direction are the dual reciprocity method (DRM) [1] and the multiple reciprocity
method (MRM) [2]. The DRM is in fact a process of evaluating the particular solution
without direct numerical integration and is equivalent to the method of particular solu-
tions (MPS). We will use the MPS due to its close connection with the method of funda-
mental solutions (MFS) which is the focus of this paper. Despite the advantage of mesh
reduction by one dimension, the resultant matrix in the BEM formulation is dense in con-
trast to the sparse matrices obtained with traditional methods such as the FEM, FDM and
FVM. Hence, the second major challenge for BEMs is how to overcome the necessity to
solve the resulting dense systems.

Since the early 1990s, the method of fundamental solutions has re-emerged as an ef-
fective meshless method. Instead of boundary discretization as in the classical BEM, only
the boundary collocation points are used in the solution process. The MFS is attributed
to Kupradze in 1964 [3] and is classified as an indirect boundary method or regular BEM
in the engineering literature. In the MFS, the singularity is avoided by the use of a fic-
titious boundary outside the domain of interest. As a result, the MFS has the following
advantages over the classical BEM: (i) It requires no boundary discretization. (ii) No
boundary integration is required. (iii) It converges exponentially for smooth boundary
shapes and boundary data. (iv) It is attractive for solving high dimensional problems.
(iv) Its implementation and coding are easy. Despite all these attractive features, the MFS
was not considered as a main-stream numerical method due to its limitation in solving
only homogeneous problems and the uncertainty in choosing the fictitious boundary. An
important reason for which the MFS has gradually received attention from the science
and engineering community is that, due to the effort of Golberg and Chen [4], it has been
successfully extended to solving nonhomogeneous problems and various types of time-
dependent problems by being used in conjunction the MPS. With the combined features
of the MFS and the MPS, a truly meshless numerical scheme (MFS-MPS) for solving par-
tial differential equations can be obtained. In the MFS-MPS, two dense matrix systems,
one for finding the particular solution using the MPS and the other for obtaining the
homogeneous solution using the MFS, need to be solved. The development of the com-
pactly supported radial basis functions (CS-RBFs) [5] has made it possible for the matrix
in the MPS to be sparse [6]. However, no progress has been reported in the effort to for-
mulate a sparse matrix in the context of the MFS. It is desirable that MFS-MPS has the
combined features of ‘sparsity’ and ‘meshlessness’.

It is the purpose of this paper to investigate, apparently for the first time, how a
sparse formulation of the MFS for the modified Helmholtz equation, which has wide
applications in time-dependent PDEs [7], can be achieved.


