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Abstract. Dislocations are line defects in crystalline materials. The Peierls-Nabarro
models are hybrid models that incorporate atomic structure of dislocation core into
continuum framework. In this paper, we present a numerical method for a generalized
Peierls-Nabarro model for curved dislocations, based on the fast multipole method
and the iterative grid redistribution. The fast multipole method enables the calcula-
tion of the long-range elastic interaction within operations that scale linearly with the
total number of grid points. The iterative grid redistribution places more mesh nodes
in the regions around the dislocations than in the rest of the domain, thus increases
the accuracy and efficiency. This numerical scheme improves the available numerical
methods in the literature in which the long-range elastic interactions are calculated
directly from summations in the physical domains; and is more flexible to handle
problems with general boundary conditions compared with the previous FFT based
method which applies only under periodic boundary conditions. Numerical examples
using this method on the core structures of dislocations in Al and Cu and in epitaxial
thin films are presented.
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1 Introduction

Dislocations are line defects and the primary carriers of plastic deformation in crystalline
materials. In the dislocation theory, the elastic field of a dislocation is very well described
by the continuum linear elasticity theory outside a small region surrounding the dislo-
cation [1]. Inside the small region around the dislocation, which is known as the core
region of the dislocation, the atomic structure is heavily distorted, and the linear elastic-
ity theory gives unphysical singularities in the elastic field. The core region determines
the energy and the mobility of the dislocation, thus its modeling plays important roles in
the dislocation and plasticity theories. The Peierls-Nabarro model [1–3] provides a way
to incorporates atomic features inside the core region into the continuum linear elasticity
theory. More accurate first principles results can also be included in the framework of the
Peierls-Nabarro model [5,10–12,15,17] through the generalized stacking fault energy [4].

In the Peierls-Nabarro model [1–3], the solid is divided by the slip plane of the dislo-
cation into two half-space linear elastic continua, with a disregistry (or misfit) relative to
each other and connected by a nonlinear potential force. The total energy consists of the
elastic energy in the two half-space continua and the misfit energy due to the nonlinear
atomic interaction across the slip plane. The dislocation core profile is determined by
energy minimization. The solution of the Peierls-Nabarro model gives a description for
the dislocation core profile as well as the energy barrier (Peierls energy) and the critical
stress (Peierls stress) for the motion of dislocations. Previously, efforts were made mainly
on straight dislocations [2–15, 17, 19, 20].

Several generalized Peierls-Nabarro models for curved dislocations have been pro-
posed [16, 18, 21–23]. Some recent applications of the Peierls-Nabarro models can be
found, e.g., in [24–29]. The major numerical challenge of such models lies in the cal-
culation of the long-range elastic interaction. In the finite element based model proposed
in [16], this long-range interaction is calculated by direct summation over all the grid
points, which requires O(N2) operations, where N is the total number of grid points [30].
The lattice model presented in [18] also requires O(N2) direct summation for the long-
range interaction of dislocation over the slip plane with N lattice sites. The models
proposed in [21–23] employ the fast Fourier transform method (FFT) for the general-
ized Peierls-Nabarro on a uniform mesh with periodic boundary conditions, thus only
O(N logN) operations are needed for the calculation of this long-range interaction. Al-
though the FFT based generalized Peierls-Nabarro models are quite efficient, they are
limited to periodic boundary conditions which mimic the behavior of dislocations in bulk
of the materials. However, the periodic boundary conditions cannot be used when ma-
terials boundaries are present, for example, when dislocations are in thin films where
traction-free boundary conditions are required on the free surfaces [6, 7].

In this paper, we present an alternative numerical method for the generalized Peierls-
Nabarro model in Ref. [21] based on the fast multipole method (FMM) [33, 34] and the
iterative grid redistribution [35]. This presented numerical method is an improvement of
the available numerical methods in the literature in which the long-range elastic interac-


