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Abstract. The statistical error associated with sampling in the DSMC method can be
categorized as type I and II, which are caused by the incorrect rejection and acceptance
of the null hypothesis, respectively. In this study, robust global and local automatic
steady state detection methods were developed based on an ingenious method based
purely on the statistics and kinetics of particles. The key concept is built upon prob-
abilistic automatic reset sampling (PARS) to minimize the type II error caused by in-
correct acceptance of the samples that do not belong to the steady state. The global
steady state method is based on a relative standard variation of collisional invariants,
while the local steady state method is based on local variations in the distribution
function of particles at each cell. In order to verify the capability of the new meth-
ods, two benchmark cases — the one-dimensional shear-driven Couette flow and the
two-dimensional high speed flow past a vertical wall — were extensively investigated.
Owing to the combined effects of the automatic detection and local reset sampling, the
local steady state detection method yielded a substantial gain of 30-36% in computa-
tional cost for the problem studied. Moreover, the local reset feature outperformed the
automatic detection feature in overall computational savings.
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1 Introduction

The direct simulation Monte Carlo (DSMC) method is considered as one of the most suc-
cessful computational methods to solve the Boltzmann equation based on direct statisti-
cal simulation of the molecular processes described by the gas kinetic theory [1,2]. It has
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Types of error in
DSMC simulation
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Figure 1: Computational errors, including the statistical error, in the DSMC simulation.

also been mathematically and empirically proved that the DSMC solution will converge
to the true solution of the Boltzmann equation for a gas undergoing binary collisions be-
tween gas particles, if critical computational parameters — time-step, cell-size, and the
number of particles — are chosen properly and when no wall surface boundary condition
is involved in the simulation [3,4]. Owing to robustness and ease of incorporating var-
ious collision mechanisms into the algorithm, DSMC has expanded its way into diverse
applications, including hypersonic gas flows, micro-scale gases, chemical reactions, and
material processing [5-8].

Four types of computational error are in general present in the DSMC simulation [4]:
decomposition (or discretization), statistical [9,10], machine (or round-off), and boundary
condition errors, as summarized in Fig. 1. In particular, the statistical error — the focus
of the present work — is caused by the random fluctuation and statistical uncertainty
inherent in the DSMC method. In a recent study of the verification method for DSMC [4],
based on the exact physical laws of conservation, it was shown that the statistical error is
dominant in the first phase of error convergence and the rate of its decrease is inversely
proportional to the square root of the sample steps. In the second phase, the combination
of boundary condition and decomposition errors becomes prominent in comparison with
the statistical error. To reduce the statistical uncertainty and noise arising in evaluating
the mean value of the random variables during the DSMC simulation, an appropriate
probability sampling process is required [1,4,11].

The statistical error associated with the sampling procedure can be further catego-
rized as type I and type II. In order to statistically analyze these errors, a null hypothe-
sis [12] is defined as the DSMC samples belonging to the steady state. An incorrect rejec-
tion of the null hypothesis — not considering the samples that belong to the steady state
— leads to type I error, which can be minimized by including more independent steady
state samples. On the other hand, an incorrect acceptance of the null hypothesis — con-



