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Abstract. In this work we discuss the numerical discretization of the time-dependent
Maxwell’s equations using a fully explicit leap-frog type discontinuous Galerkin
method. We present a sufficient condition for the stability and error estimates, for
cases of typical boundary conditions, either perfect electric, perfect magnetic or first
order Silver-Miiller. The bounds of the stability region point out the influence of not
only the mesh size but also the dependence on the choice of the numerical flux and the
degree of the polynomials used in the construction of the finite element space, making
possible to balance accuracy and computational efficiency. In the model we consider
heterogeneous anisotropic permittivity tensors which arise naturally in many applica-
tions of interest. Numerical results supporting the analysis are provided.
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1 Introduction

Maxwell’s equations are a fundamental set of partial differential equations which de-
scribe electromagnetic wave interactions with materials. The advantages of using dis-
continuous Galerkin time domain (DGTD) methods on the simulation of electromag-
netic waves propagation, when compared with classical finite-difference time-domain
methods, finite volume time domain methods or finite element time domain methods,
have been reported by several authors (see e.g. [9] and references therein cited for an
overview). DGTD methods gather many desirable features such as being able to achieve
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high-order accuracy and easily handle complex geometries. Moreover, they are suitable
for parallel implementation on modern multi-graphics processing units. Local refine-
ment strategies can be incorporated due to the possibility of considering irregular meshes
with hanging nodes and local spaces of different orders.

The staggered leapfrog time-stepping algorithm is a popular choice for time domain
Maxwell’s equations (e.g. [1,9,21]) due to its simplicity, as it does not require to save in
memory previous states, accuracy and robustness.

Despite the relevance of the anisotropic case in applications (e.g. [4,14,24]), most of the
formulation of the DGTD methods presented in the literature are restricted to isotropic
materials [11,12,16]. Motivated by our application of interest described in [2,20], in
the present paper we consider a model with a heterogeneous anisotropic permittivity
tensor. The treatment of anisotropic materials within a DGTD framework was discussed
for instance in [9] (with central fluxes) and in [13] (with upwind fluxes). The stability
analysis of DGTD methods for Maxwell’s equations was considered in [9], where the
scheme that is defined with the central fluxes leads to a locally implicit time method in
the case of Silver-Miiller absorbing boundary conditions, and [15], where the scheme is
defined with the upwind fluxes leading to an implicit method. Our derivation extends
the results in [9] and [15] to a fully explicit in time method for both cases, central fluxes
and upwind fluxes.

We consider the formulation in two dimensions as well as an extension to a three
dimensional problem and we combine the nodal DG method [11] for the integration
in space, considering both central and upwind fluxes, with an explicit leap-frog type
method for the time integration. We present a rigorous proof of stability showing the in-
fluence of the mesh size, the choice of the numerical flux and choice of the degree of the
polynomials used in the construction of the finite element space and the boundary con-
ditions, which can be either perfect electric, perfect magnetic or first order Silver-Miiller.

This paper consists in six sections after this introduction. In Section 2, we state the
problem and in Section 3 we describe the formulation of the numerical method for the
two-dimensional problem. In Section 4 we derive stability and convergence results for
the method described in the previous section. We illustrate the theoretical results with
numerical examples in Section 5. In the last section we extend the stability results to the
three dimensional case.

2 The governing equations

The electromagnetic field consists of coupled electric and magnetic fields, known as elec-
tric field intensity, E, and magnetic induction, B. The effects of these two fundamental
fields on matter can be characterized by the electric displacement and the magnetic field
intensity vectors, frequently denoted by D and H, respectively. The knowledge of the
material properties can be used to derive a useful relation between D and E and between
B and H. Here we will consider the constitutive relations of the form D=¢E and B=uH,



