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Abstract. It is well known that the approximation of eigenvalues and associated eigen-
functions of a linear operator under constraint is a difficult problem. One of the diffi-
culties is to propose methods of approximation which satisfy in a stable and accurate
way the eigenvalues equations, the constraint one and the boundary conditions. Using
any non-stable method leads to the presence of non-physical eigenvalues: a multiple
zero one called spurious modes and non-zero one called pollution modes. One way to
eliminate these two families is to favor the constraint equations by satisfying it exactly
and to verify the equations of the eigenvalues equations in weak ways. To illustrate
our contribution in this field we consider in this paper the case of Stokes operator.
We describe several methods that produce the correct number of eigenvalues. We
numerically prove how these methods are adequate to correctly solve the 2D Stokes
eigenvalue problem.
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1 Introduction

The 2D Stokes eigenvalue problem on a square domain is considered in this paper as
model example with a conservation law of the type ∇·u = 0. With this test example it
is possible to discuss the various numerical problems that appear when flux conserva-
tion has to be satisfied in the incompressible Navier-Stokes. If these constraint condition
cannot be satisfied precisely, so-called spectral pollution [9] appears and the numerical
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approach does not stably converge to the physical solution. The reason is that due to reg-
ularity constraints imposed by standard numerical approximation methods, the energy
cannot reach the minimum required by the physics. In fact, current numerical methods
satisfy the boundary conditions strongly, the operator equations and the constraints only
weakly.

In Section 2, we propose a non-exhaustive list of methods to deal with the 2D Stokes
eigenvalue problem. Specifically, if the constraint ∇·u=0 is satisfied by a u=∇×ψ ansatz,
the number of degrees of freedom remains the same as in the unconstrained Laplacian
problem. As a consequence, besides the Stokes modes, one finds a whole spectrum of
additional unphysical modes, corresponding to those of the heat equation. Thus, the ini-
tial physical problem has fundamentally been changed. This approach has been applied
to compute the full Stokes spectrum [1] by the first time. Due to the choice of a unit
square domain, the authors were able to separate the Stokes modes from those belonging
to the heat equation. An other strategy consists in applying a penalty method to solve
the Stokes problem. In this case, the number of degrees of freedom still remains the same
as those in the unconstrained Laplacian problem.

In Section 3, we focus on the two formulations considering only the velocity as vari-
able: the penalty method and the divergence-free Galerkin approach. In the framework
of spectral element approximation schemes, a stable spectral element is proposed for
each method. For the penalty method, a COOL approach [2, 3] is made and the unphysi-
cal modes can be pushed towards λ=0. For the divergence-free Galerkin approach, two
strategies christened “explicit” and “implicit” are detailed. The explicit strategy consists
in using the properties of the kernel of the grad(div) operator to construct a divergence-
free basis. Such a basis has the right number of degrees of freedom, thus delivering the
exact number of Stokes eigenfunctions with high precision. The implicit strategy is a
direct algebraic elimination process of the ∇·u=0 constraint. This leads to a sparse ma-
trix elimination process, described in detail in [2]. It delivers the right number of highly
precise Stokes modes.

Finally, in Section 4, some numerical experiments are performed to prove the effi-
ciency of the proposed methods and a comparison between the different approaches is
given.

2 The Stokes eigenvalue problem: continuous version

Let Ω ⊂ IRd, d = 2,3, be a Lipschitz domain, the generic point of Ω is denoted x. The
symbol L2(Ω) stands for the usual Lebesgue space and H1(Ω), the Sobolev space that
involves all the functions that are, together with their gradient, in L2(Ω). C(Ω) denotes
the space of continuous functions defined in Ω.

The continuous Stokes eigenvalue problem reads: Find a vector u and λ2 ∈ IR+ such


