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Abstract. In this paper we present a new computationally efficient numerical scheme

for the minimizing flow for the computation of the optimal L2 mass transport map-

ping using the fluid approach. We review the method and discuss its numerical
properties. We then derive a new scaleable, efficient discretization and a solution

technique for the problem and show that the problem is equivalent to a mixed form

formulation of a nonlinear fluid flow in porous media. We demonstrate the effec-
tiveness of our approach using a number of numerical experiments.
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1. Introduction

Optimal mass transport is of cardinal importance in geoscience and engineering

with other applications in econometrics, fluid dynamics, automatic control, transporta-

tion, statistical physics, shape optimization, expert systems, and meteorology [26,31].

The problem was first formulated by the civil engineer Gaspar Monge in 1781, and

concerns with finding an optimal way, in the sense of minimal transportation cost, of

moving a pile of soil from one site to another. Much later the problem was extensively

analyzed by Kantorovich [21], and is now known as the Monge-Kantorovich problem.

There are several formulations of the problem [2, 26, 31] of varying degrees of

generality. Here we start with the formulation of the Monge-Kantorovich problem for

smooth densities and domains in Euclidean space (for more general measures, see [2]).

Let Ω0 and Ω1 be two diffeomorphic connected subdomains of Rd, and let µ0, µ1 be
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Borel measures on Ω0 and Ω1, each with a strictly positive density function µ0(x) ≥
µ0
low > 0 and µ1 ≥ µ1

low > 0, respectively. Assume

∫

Ω0

µ0(x)dx =

∫

Ω1

µ1(x)dx,

so that the same total mass is associated with Ω0 and Ω1.

Under some mild assumptions, the Monge-Kantorovich problem may be expressed

as the following optimization problem

min M(u) :=
1

p

∫

Ω
µ0(x)|u(x)|

p dx (1.1a)

s.t. c(u) = det(Id +∇u)µ1(x+ u(x)) − µ0(x) = 0, (1.1b)

where u is a C1,α diffeomorphism from Ω0 → Ω1. The constraint c(u) = 0 (the Jacobian

equation) is often referred to as the mass preserving (MP) property. Here, we consider

the classical case of p = 2 as well as 1 < p ≤ 2 and attempt to numerically address the

limiting (ill-posed) case when p = 1.

Even with a simple, quadratic distance function, the problem (1.1) is regarded as

a highly nonlinear equality constrained optimization problem. Extensive analysis as

for the existence, uniqueness, and properties of the solution is available (see for exam-

ple [2, 15, 31] and the references therein). However, while a large body of literature

deals with the analysis of the problem, surprisingly a relatively small number of papers

concern with finding numerical solutions to the problem, and even a smaller number

of publications that deal with devising efficient, that is, scalable, numerical solutions

for this challenging problem [3,5,11–13,19,24].

Generally speaking, numerical methods for the solution of the problem can be di-

vided into three approaches. In the first approach, for the case p = 2, one utilizes the

property that u = ∇φ where φ is a concave function and solves the Monge-Ampère

equation [14, 25]. The second approach attempts to tackle the constrained optimiza-

tion problem head-on. Among this work is our previous algorithm [19].

A third approach for the solution of the problem, which is the starting point of

this study was proposed in the seminal paper of Benamou and Brenier [5]. Their re-

search reconstructs an optimal path from µ0 to µ1 by solving a convex optimization

problem with a linear space-time transport partial differential equation as a constraint.

Their approach is particularly useful if the transportation path is needed. Its disad-

vantage is that it increases the dimensionality of the problem by recasting the problem

as a space-time control problem. In the original work of Benamou and Brenier, sim-

ple nodal discretization was used, combined with the augmented Lagrangian method

for the solution of the problem. When reproducing the results of the paper we have

observed some stability issues as well as deterioration of the algorithm for large-scale

problems. As we show in this work this instability can be explained by analyzing their

discretization using multigrid tools (Fourier analysis) that show that the discretization

is not h-elliptic.
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