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Abstract. About thirty years ago, Achi Brandt wrote a seminal paper providing a

convergence theory for algebraic multigrid methods [Appl. Math. Comput., 19
(1986), pp. 23–56]. Since then, this theory has been improved and extended in a

number of ways, and these results have been used in many works to analyze alge-

braic multigrid methods and guide their developments. This paper makes a concise
exposition of the state of the art. Results for symmetric and nonsymmetric matrices

are presented in a unified way, highlighting the influence of the smoothing scheme
on the convergence estimates. Attention is also paid to sharp eigenvalue bounds

for the case where one uses a single smoothing step, allowing straightforward ap-

plication to deflation-based preconditioners and two-level domain decomposition
methods. Some new results are introduced whenever needed to complete the pic-

ture, and the material is self-contained thanks to a collection of new proofs, often

shorter than the original ones.
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1. Introduction

Multigrid methods are among the most efficient iterative techniques to solve large

sparse systems of linear equations. These methods combine two different iterations:

a smoothing iteration, which is often a simple iterative method like the Gauss–Seidel

method, and a coarse grid correction, which consists in computing an approximate

solution to the residual equation on a coarser grid with fewer unknowns.

Perhaps because of this combination two different processes, multigrid methods are

difficult to analyze. Abstract theories (e.g., [21,46]) are restricted to discretized partial

differential equations on a regularly refined grid, and allow one to obtain only qualita-

tive results. Fourier and local mode analyses (e.g., [55]) yield sharp quantitative esti-

mates, but only when the system to solve stems from a constant or smoothly variable
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grid stencil. In all other cases, the algebraic theory [6,10,17,18,42,48,51,57] appears

as the right tool, despite its own limitations. In particular, it allows the assessment of

“algebraic” multigrid (AMG) methods [8], in which the coarse grid correction is not re-

lated to the discretization on a coarser grid, but defined by applying proper algorithms

to the system matrix. Examples of works where the theoretical results have helped

to the design and/or the analysis of AMG methods include [2, 10, 14, 38, 39, 43, 48];

the algebraic theory also gave theoretical foundations to the coarsening by compatible

relaxation [7,24], see [9,17,42].

Early analyses of multigrid methods using essentially algebraic arguments trace

back to the eighties and include [3, 20, 26, 31–33]. They were quickly followed by

Brandt’s seminal paper [6], which provides the first convergence theory applicable to

(and intended for) AMG methods. Since then, the theory has been improved and

extended in a number of works; see, e.g., [10, 17, 18, 42, 48, 51, 57]. Now, each refer-

ence highlights its own improvements, and the reader searching for a clear summary

or overview of the state of the art has to go through quite many specialized works.

Moreover, many of these works are restricted to a specific smoothing scheme, making

difficult the setting up of a clear picture of the available results.

Our main goal in this paper is to present such a clear picture, highlighting in par-

ticular the differences induced by the type of smoothing scheme.

The organization of the paper is a bit unusual. After the introduction of the gen-

eral setting and the statement of the common assumptions (§2), we state in §3 the

set of results as “Facts”, which are given without proof nor comment. All comments

are gathered in §4, whereas proofs are delayed until §5. Most of the facts are indeed

not new, and hence have already been proved and commented in the original refer-

ences. Regarding comments, we therefore focus on those which compare the facts that

are similar but cover different situations, a viewpoint seldom taken in the literature.

Logically, this can be done only after all facts have been stated.

Regarding proofs, some readers may feel that they are unnecessary. However, for

most facts we are able to give a new proof, generally shorter than those in the original

references, and we also often condense the proof of several facts in a single one. This

allows us to be self-contained while keeping §5 to a fairly reasonable size. Moreover,

some of the results are new and require in any case a proof. For instance, the neces-

sary and sufficient conditions for the nonsingularity of the two-grid preconditioner are

seemingly stated for the first time (Fact 1.1), and we are not aware of previous studies

considering in detail the effect of the number of smoothing steps on the theoretical

estimates (Fact 5.4).

The chosen format (inspired by [22]) does not allow us to include a thorough dis-

cussion of past contributions and how they influenced the progress in the field. For

each fact stated in §3 we mention its origin in parenthesis, and we further make some

connection with the literature in §4, especially in Remark 4 devoted to historical com-

ments. However, this yet gives only a very partial account of previous developments.

In particular, one should not forget that more general or sharper bounds are always

indebted to their predecessors: even when the new proof is very different in nature,
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