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Abstract. The mathematical model for semiconductor devices in three space dimen-

sions are numerically discretized. The system consists of three quasi-linear partial

differential equations about three physical variables: the electrostatic potential, the
electron concentration and the hole concentration. We use standard mixed finite

element method to approximate the elliptic electrostatic potential equation. For
the two convection-dominated concentration equations, a characteristics-mixed fi-

nite element method is presented. The scheme is locally conservative. The optimal

L2-norm error estimates are derived by the aid of a post-processing step. Finally,
numerical experiments are presented to validate the theoretical analysis.
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1. Introduction

The numerical simulation of the transient behavior of semiconductor devices is of

great value both in theory and in practice (cf. [6, 17]). The production of actual semi-

conductor devices is mainly based on a planar technology. However, the down-scaling

of the devices brings some severe problems such as increase of power densities and

noise effects. The use of multi-gate field-effect transistors is a possible solution to re-

duce the noise. In such devices, the gate contact encloses the channel region from

different sides to lead to smaller no-signal currents. But such devices require to be

modeled and numerically simulated in three space dimensions. In this paper, we will

consider the drift-diffusion model of three-dimensional semiconductor devices. The
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mathematical model is a coupled system of three quasi-linear partial differential equa-

tions with initial and boundary conditions (cf. [2, 4, 12, 18, 19]). The equation for the

electrostatic potential is a Poisson equation. The continuity equations for the electrons

and holes are of convection-dominated diffusion type. The model is described by the

following system

−∆ψ = ∇ · u = α(p− e+ F (x)), (x, t) ∈ Ω× [0, T ], (1.1a)

∂e
∂t = ∇ · [De(x)∇e+ µe(x)eu] −R(e, p), (x, t) ∈ Ω× J, (1.1b)

∂p
∂t = ∇ · [Dp(x)∇p− µp(x)pu]−R(e, p), (x, t) ∈ Ω× J, (1.1c)

where J = (0, T ], and Ω is a bounded domain in R3. Here ψ, e and p are the elec-

trostatic potential, the electron and hole concentrations, respectively. u = −∇ψ is the

electric field. α = q/ϑ, where q > 0 is the electronic charge and ϑ > 0 is the dielectric

permittivity. Ds(x)(s = e, p) are the diffusion coefficients which are related to the car-

rier mobilities µs(x)(s = e, p) through the Einstein relation Ds(x) = UTµs(x), with UT
being the thermal voltage. R(e, p) is the net recombination rate. F (x) = ND(x)−NA(x)
is the doping profile in the device, where ND(x) and NA(x) are the donor and acceptor

impurity concentrations, respectively.

We consider the following boundary and initial conditions
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= 0, t ∈ J, (1.1d)

e(x, 0) = e0(x), p(x, 0) = p0(x), x ∈ Ω, (1.1e)

where ν is the unit outward normal vector on boundary ∂Ω.

The following compatibility condition (cf. [17])
∫

Ω
(p0 − e0 + F )dx = 0 (1.1f)

must be imposed on the data in order that a solution is possible. In addition, we apply

the conditions
∫

Ω
ψdx = 0, 0 ≤ t ≤ T (1.1g)

to determine a unique ψ for each t.
In reality (1.1b) and (1.1c) might be strongly convection-dominated when Ds(s =

e, p) are quite small. In such circumstance, the standard Galerkin or difference scheme

does not work well any more. In order to obtain better approximations, a variety of

numerical techniques, such as characteristic finite element method (cf. [18]), character-

istic finite difference method (cf. [4,19]), upwind finite volume method (cf. [14–16]),

etc., have been used for (1.1) in two or three space dimensions.

Although the modified method of characteristic finite element method (MMOC-

Galerkin) (cf. [5,9]) has advantages of avoidance of numerical diffusion and nonphysi-

cal oscillations and smaller time-truncation, it fails to preserve local mass balance. Pre-

serving mass locally is of great importance in practice. In [1], Arbogast and Wheeler
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