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Abstract. In this paper, we present a decoupled finite element scheme for two-
dimensional time-dependent viscoelastic fluid flow obeying an Oldroyd-B constitu-
tive equation. The key idea of our decoupled scheme is to divide the full problem into
two subproblems, one is the constitutive equation which is stabilized by using dis-
continuous Galerkin (DG) approximation, and the other is the Stokes problem, can be
computed parallel. The decoupled scheme can reduce the computational cost of the
numerical simulation and implementation is easy. We compute the velocity u and the
pressure p from the Stokes like problem, another unknown stress σ from the constitu-
tive equation. The approximation of stress, velocity and pressure are respectively, P1-
discontinuous, P2-continuous, and P1-continuous finite elements. The well-posedness
of the finite element scheme is presented and derive the stability analysis of the decou-
pled algorithm. We obtain the desired error bound also demonstrate the order of the
convergence, stability and the flow behavior with the support of two numerical exper-
iments which reveals that decoupled scheme is more efficient than coupled scheme.
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1 Introduction

In nature, most of the fluids are non-Newtonian which has a great impact on research due
to its enormous and significant practical applications. Viscoelastic fluid can be used in
various areas such as polymeric industries, biological rheology, daily life uses, petroleum
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engineering, nuclear industries, blood flow motion in arteries, coating of the polymeric
solution, ink-jet printing and so on. The fluid which satisfies the properties of the vis-
cous fluid and the elastic properties of solids are called viscoelastic fluid. The New-
tonian fluid has a proportional relationship with the Cauchy stress and strain which
appears linearly and the proportional constant known as Newtonian viscosity. On the
other hand, the relationship for the non-Newtonian fluid appears in a nonlinear manner.
Non-Newtonian fluids are many kinds like inelastic, linear and nonlinear type. Over the
last few decades, the developments of the viscoelastic fluid research have been achieved
significant progress, but in theoretical, experimental and numerical aspects, the study of
the viscoelastic fluid is different from the Newtonian fluid.

Due to the shear rate dependent viscosity, drag representation, stress relaxation and
many other complex structures of viscoelastic fluid cause many effects can’t be predicted
by the Navier-Stokes equation [1, 2]. Over the last century, it was a significant challenge
to formulate a suitable constitutive model to describe the large deformation of the vis-
coelastic fluid and successfully introduced by James G. Oldroyd [3] in 1950 to study the
behavior of the dilute solution of a polymeric molecule. Since then many models were
developed to study the viscoelastic fluid flow such as Maxwell (UCM) model, Oldroyd-B
model, Phan-Thien-Tanner (PTT) model, Larson model, Johnson-Segalman model, and
so on.

The difficulty arises to approximate the viscoelastic fluid flow model by the hyper-
bolic nature of the constitutive equation requires stabilization in computation. Accurate
numerical simulation is essential for the transient viscoelastic fluid flow to understand
many problems in non-Newtonian fluid mechanics, particularly those related to flow
instabilities [3–5]. The underlying equations are usually considered as the (parabolic)
conservation of momentum and incompressibility equations for fluid flow, coupled with
a (hyperbolic) constitutive equation for the viscoelastic component of the stress. Some
existence results for the viscoelastic flow with a differential constitutive law is obtained
by Guillopé and Saut in [6], more complete discussion of existence and uniqueness issues
can be found in [1].

In 1973, Reed and Hill first introduced discontinuous Galerkin (DG) method to study
the hyperbolic equation in [7]. After one year, Lesaint and Raviart gave the analysis
of this method for hyperbolic PDEs to solve the neutron transport equation in [8]. DG
method became popular due to its computational flexibility, ability to incorporate phys-
ical properties, element-wise conservative and implementable on an unstructured mesh.
In 1986, Johnson and Pitkäranta analyzed the DG method for a scalar hyperbolic equa-
tion in [9]. DG method for the viscoelastic fluid flow was first introduced by Fortin et
al. in [10, 11] but their decoupled steady-state scheme didn’t converge. Later, Atkins and
Shu gave a quadrature-free implementation of DG method for the hyperbolic equation
in [12]. To avoid the introduction of spurious oscillations in finite element approximation
for the constitutive equation in [13], Baranger and Wardi used the implicit Euler tempo-
ral discretization and the discontinuous Galerkin (DG) approximation for the hyperbolic
constitutive equation, required certain time step-size conditions k =O(h3/2). Uncondi-


