Numer. Math. Theor. Meth. Appl. Vol. 12, No. 1, pp. 1-20
doi: 10.4208/nmtma.0A-2018-0066 February 2019

Stochastic Gradient Descent for Linear
Systems with Missing Data

Anna Ma'**and Deanna Needell 2

! Claremont Graduate University, Claremont, CA 91711, USA
2 University of California, Los Angeles, Los Angeles CA 90095, USA

Received 25 May 2018; Accepted (in revised version) 21 July 2018

Abstract. Traditional methods for solving linear systems have quickly become imprac-
tical due to an increase in the size of available data. Utilizing massive amounts of
data is further complicated when the data is incomplete or has missing entries. In this
work, we address the obstacles presented when working with large data and incom-
plete data simultaneously. In particular, we propose to adapt the Stochastic Gradient
Descent method to address missing data in linear systems. Our proposed algorithm,
the Stochastic Gradient Descent for Missing Data method (mSGD), is introduced and
theoretical convergence guarantees are provided. In addition, we include numerical
experiments on simulated and real world data that demonstrate the usefulness of our
method.
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1. Introduction

When handling large amounts of data, it may not be possible to load the entire matrix
(data set) into memory, as typically required by matrix inversions or matrix factorization.
This has led to the study and advancement of stochastic iterative methods with low memo-
ry footprints such as Stochastic Gradient Descent, Randomized Kaczmarz, and Randomized
Gauss-Seidel [13,16,18,23]. The need for algorithms that can process large amounts of
information is further complicated by incomplete or missing data, which can arise due
to, for example, attrition, errors in data recording, or cost of data acquisition. Standard
methods for treating missing data, which include data imputation [6, 7], matrix comple-
tion [3,11,12,19], and maximum likelihood estimation [5, 15] can be wasteful, create
biases, or be impractical for extremely large amounts of data. This work simultaneously
addresses both issues of large-scale and missing data.
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Consider the system of linear equations Ax = b!, where A € C™" is a large, full-
rank, overdetermined (m > n) matrix. Suppose that A is not known entirely, but instead
only some of its entries are available. As a concrete example, suppose A is the rating ma-
trix from the survey of m users about n service questions, and b contains the m “overall”
ratings from each user (which is fully known). Each user may not answer all of the indi-
vidual service questions, but a company wishes to understand how each question affects
the overall rating of the user. That is, given partial knowledge of A, one wishes to uncover
X, = argmin, ﬁIle — b2

Let A = D o A where A denotes the full matrix, and o be the element-wise product,
D denotes a binary matrix (1 indicating the availability of an element and O indicating a
missing entry). Formally, one wants to solve the following optimization program:

Given A,b s.t.Ax =b and A=DoA,

1
Find x, = argmin — ||Ax — b||?, (1.1
xew 2m

where # is a convex domain containing the solution x, (e.g. a ball with large enough
radius).

Contributions. This work presents a stochastic iterative projection method for solving
large-scale linear systems with missing data. We provide theoretical bounds for the pro-
posed method’s performance and demonstrate its usefulness on simulated and real world
data sets.

1.1. Stochastic Gradient Descent

Stochastic iterative methods such as Randomized Kaczmarz (RK) and Stochastic Gra-
dient Descent (SGD) have gained interest in recent years due to their simplicity and ability
to handle large-scale systems. Originally discussed in [20], SGD has proved to be partic-
ularly popular in machine learning [1, 2,24]. SGD minimizes an objective function F(x)
over a convex domain # using unbiased estimates for the gradient of the objective, i.e.,
using f;(x) such that E[Vf;(x)] = VF(x). At each iteration, a random unbiased estimate,
Vfi(x), is drawn and the minimizer of F(x) is estimated with:

X, = Py (xx-1 — a4 Vfi(xx_1)) (1.2)

where a; is an appropriately chosen step size, or learning rate, at iteration k and %,
denotes the projection onto the convex set #. To solve an overdetermined linear system
Ax = b, one approach is to minimize the least-squares objective function F(x) = ﬁIIAx —
b||?> = #Z;n:lfi(x), where f;(x) = %(Al-x — b;)?, A; denotes the i‘" row of A, and b,
denotes the i'" entry of b. In this setting, a random row of the matrix A is selected and

IThe linear system is not assumed to be consistent; we will use the notation Ax = b to denote a general linear
system.



