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Abstract. The equioscillation principle is an important rule to fix the parameter for the
Schwarz waveform relaxation (SWR) algorithm with Robin transmission conditions.
For parabolic PDEs with integer order temporal derivative, such a principle yields
optimal Robin parameter, while in our previous study we found numerically that it
is not always the case for time fractional PDEs: the Robin parameter determined by
the equioscillation principle is sometimes far away from optimal. In this paper, by
using the time fractional Cable equations as the model, we show that our previous
finding does not happen occasionally but an inherent property of the SWR algorithm.
Our analysis also reveals an essential difference between the asymptotic convergence
rates in the overlapping and non-overlapping cases. Numerical results are provided
to validate our theoretical analysis.
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1 Introduction

The Schwarz waveform relaxation (SWR) algorithm belongs to the widely used domain
decomposition (DD) methods but with completely new implementation strategy for time
dependent PDEs. The classical strategy employs the alternating or parallel Schwarz
method to the elliptic PDEs which result from semi-discretizing the time dependent PDEs
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in time [7, 8,35], but in the SWR framework one directly decomposes the space domain
and solve all the subproblems simultaneously or alternately. The main features (or say
merits) of the SWR algorithm are able to treat different subdomains numerically differ-
ently with an adapted procedure for each subdomain and the interested reader can refer
to [13,14] and [15] for the original idea of the SWR algorithm.

The configuration of the SWR algorithm is as follows. We first decompose the space
domain into several subdomains and then we solve a series of time-dependent PDEs on
these subdomains simultaneously or sequentially, which are formed by using the same
governing equation and the same initial condition of the original PDE, but with carefully
designed boundary conditions on the artificial boundaries. These boundary conditions
are terminologically called transmission conditions (TCs), which transmit information be-
tween neighbor subdomains via iterations. The Robin TCs attract considerable attention
in the past years, in which a free parameter, namely the Robin parameter p, is involved.
This parameter has a significant influence on the convergence rate of the algorithm and
thus finding a good Robin parameter is one of the super-priority matters.

For PDEs with integer order temporal derivative, the optimization of the Robin pa-
rameter has been investigated extensively by many authors; see, e.g., [1,4-6,9-12,29, 30,
33,39-41] and references cited therein. The main finding is the following two points.
First, an ideal Robin parameter, namely popt, is related to a min-max problem. For ex-
ample, for the advection reaction diffusion equations 0¢u — vy u+adyu+uu = f, if we
consider the SWR algorithm with overlap size L > 0" such a min-max problem is
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where y; > o > 0 are two quantities defined by the problem and discretization param-
eters (see [12] for more details). With gopt being the solution of (1.1), the optimal Robin
parameter is popt = %. Second, at least in the asymptotic sense, the solution of the above
min-max problem can be fixed by solving a nonlinear system
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The first equality in (1.2) determines the maximum of Rint—order(V,§) With respect to y
and the second one implies that such a maximum equals to the value of Ry order(1,9) at
y=yo. In other words, the solution of the min-max problem (1.1) satisfies an equioscillation
principle; see Fig. 1 for illustration.

For several different types of PDEs with integer order temporal derivative, it is rigor-
ously proved that the equioscillation equation has a unique root in the relevant interval
and indeed gives the solution of the related min-max problem. For this aspect, we refer
the interested reader to the work [4,5,12,39] for the (advection) diffusion reaction equa-
tions, [6,9,10] for the Maxwell equations, [24] for the heat equations with discontinuous

+Throughout this paper, L denotes the overlap size of the SWR algorithm. For L >0 we are concerned with
overlapping SWR algorithm and for L =0 we are concerned with non-overlapping SWR algorithm.



