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Abstract. Numerical integration of stiff stochastic differential equations based on
stochastic computational singular perturbation (SCSP) was recently developed in [62].
In this paper, a modified stochastic computational singular perturbation (MSCSP)
method is considered. Similar to what was proposed in [26] for deterministic chemical
reaction systems, the current study applies the sensitivity derivatives of the forcing
terms with respect to the state variables to measure the reaction scales, which leads
to a quasi-steady state equation for the fast species. This yields explicit large-step in-
tegrators for stochastic fast-slow stiff differential equations systems, which removes
the expensive eigen-calculations of the standard SCSP integrators. The efficiency of
the MSCSP integrators is demonstrated with the benchmark stochastic Davis-Skodje
model and a nonlinear catalysis model under certain stochastic disturbances.
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1 Introduction

Stiff differential equations can find prototypes in chemical reaction systems [36,43,50,63].
In practice, these multi-scale reaction systems can be conveniently categorized as fast-
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slow stiff differential equations. Investigations by engineers and scientists on model re-
ductions and efficient numerical simulations of chemical fast-slow stiff differential equa-
tions systems have been underway in the last few decades, and a number of efficient sim-
ulation methods have been proposed (see e.g. [3, 4, 9, 11, 15, 23, 24, 27, 29, 30, 32–34, 37, 40–
42, 44, 45, 47, 49, 52, 54–56, 59, 64, 66–68]). The computational singular perturbation (CSP)
approach is one of the classical methods which decouples the fast and slow modes by
recursively finding an ideal basis under which the Jacobian of the evolution differential
equations of the amplitudes is block-diagonal. There have been a number of theoretical
and numerical studies on CSP (see e.g. [8,13–16,19,23,27–29,31,35,38,40,41,44,45,55–60]).

In addition to multi-scale phenomena, random effect also plays an important role in
chemical reaction systems. More often than not, micro/meso-scales in chemical reaction
systems can not average out random influences as systems of continuum/macroscopic
scales, and are essentially stochastic [62]. Reduction techniques for multi-scale stochastic
chemical reaction systems include those given in [1, 2, 6, 7, 10, 17, 18, 20–22, 46, 48, 51, 53,
61, 62, 65, 69], etc.. In [62], the CSP approach was extended to stochastic stiff chemical
reaction systems perturbed by multiplicative noises. The stochastic CSP (SCSP) method
enables the separation of fast and slow reactions for stochastic systems with fast-slow
nature [62], and thus yields an explicit large-step integration strategy for stiff stochastic
fast-slow differential equations systems.

As pointed out in [26], the main drawback of the CSP method is that at each iterative
step, an eigenvalue problem must be solved to produce a new basis for the purpose of
scale separation. This can make the CSP and SCSP computationally prohibitive. To avoid
such time consuming eigensystem calculations, Lam [26] proposed to use the sensitivities
of the forcing terms with respect to states of the system as substitutes of the eigensystem
computations. We name the method as modified CSP (MCSP). To briefly describe the
method, we consider the chemical reaction system

dx=X(x,y,z)dt, x(0)= x0,

dy=Y(x,y,z)dt, y(0)=y0,

dz=Z(x,y,z)dt, z(0)= z0.

(1.1)

The MCSP utilizes the following relations to the transient time τ of the fast reactions:

τx =− 1

∂X/∂x
, τy=− 1

∂Y/∂y
, τz =− 1

∂Z/∂z
, (1.2)

and τ=min{τx,τy,τz}. Certainly it restricts itself to systems with positives τs. Then, it re-
duces the system through the quasi-steady approach or the partial equilibrium approach,
according to whether there is one or more radicals, respectively. In the one-radical case,
suppose, for instance, x is the radical with τ=τx, then the MCSP linearizes the equation


