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Abstract: By using the Littlewood-Paley decomposition and the interpolation the-

ory, we prove the boundedness of fractional integral on the product Triebel-Lizorkin

spaces with a rough kernel related to the product block spaces.
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1 Introduction and Main Results

Let SN−1 be the unit sphere in RN , N ≥ 2, with the normalized Lebesgue measure dσ =

dσ(x′). Define x′ =
x

|x|
and y′ =

y

|y|
. Suppose that a function Ω(x′, y′) belongs to L1(Sn−1×

Sm−1) with n,m ≥ 2 and satisfies the following two conditions:

Ω(λ1x, λ2y) = Ω(x, y), λ1, λ2 ∈ R, (1.1)∫
Sn−1

Ω(x′, y′)dσ(x′) =

∫
Sm−1

Ω(x′, y′)dσ(y′) = 0. (1.2)

Then the singular integral operator TΩ,I on the product domain is defined by

TΩ,If(x, y) = p.v.

∫
Rn×Rm

Ω(u′, v′)

|x|n|y|m
f(x− u, y − v)dudv. (1.3)

For the study of TΩ,I , one may see [1]–[2] for the boundedness of TΩ,I with Ω(x′, y′) ∈
Lq(Sn−1 × Sm−1) or [3]–[5] with Ω(x′, y′) ∈ L(log+ L)2(Sn−1 × Sm−1).
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In order to weaken the restriction of Ω(x′, y′) on Sn−1×Sm−1, in 1995, Jiang and Lu[6]

introduced the block function spaces Bµ,ν
q (Sn−1 × Sm−1).

Definition 1.1 [6] For 1 < q ≤ ∞, a q-block on Sn−1 × Sm−1 is an Lq(Sn−1 × Sm−1)

function b( · , · ) satisfying
(i) supp(b) ⊂ Q, where Q is an interval on Sn−1×Sm−1, i.e., Q = Q1(ξ

′, δ1)×Q2(η
′, δ2),

where

Q1(ξ
′, δ1) = {x′ ∈ Sn−1 : |x′ − ξ′| < δ1 for some ξ′ ∈ Sn−1 and δ1 ∈ (0, 1]},

Q2(η
′, δ2) = {y′ ∈ Sm−1 : |y′ − η′| < δ2 for some η′ ∈ Sm−1 and δ2 ∈ (0, 1]}.

(ii) ∥b∥Lq(Sn−1×Sm−1) ≤ |Q|
1
q−1, where |Q| is the volume of Q.

For µ ≥ 0 and ν ∈ R, a non-negative function Φµ,ν is defined by

Φµ,ν(t) =


∫ 1

t

u−1−µ logν
1

u
du, 0 < t < 1;

0, t ≥ 1.

Then the definition of the block space Bµ,ν
q (Sn−1 × Sm−1) on the product domain is

Bµ,ν
q (Sn−1 × Sm−1)

=

{
Ω ∈ L1(Sn−1 × Sm−1) : Ω(x′, y′) =

∑
ℓ

Cℓbℓ(x
′, y′), Mµ,ν

q ({Cℓ}) < ∞
}
, (1.4)

where each bℓ(x
′, y′) is a q-block supported on Qℓ and the definition of Mµ,ν

q ({Cℓ}) is defined
by

Mµ,ν
q ({Cℓ}) =

∑
ℓ

|Cℓ|{1 + Φµ,ν(|Qℓ|)}. (1.5)

Moreover, the norm of Ω ∈ Bµ,ν
q (Sn−1 × Sm−1) can be written by

Nµ,ν
q (Ω) = inf

{∑
ℓ

|Cℓ|{1 + Φµ,ν(|Qℓ|)}
}
, (1.6)

where the infimum is taken over all q-block decompositions of Ω .

Jiang and Lu[6] proved the following theorem.

Theorem 1.1 [6] Suppose that Ω ∈ B0,ν
q (Sn−1 ×Sm−1) with some q > 1 and ν ≥ 1. Then

the operator TΩ,I is bounded on L2(Rn ×Rm) for m ≥ 2 and n ≥ 2.

However, the proof of Theorem 1.1 mainly based on the Plancherel Theorem. By using

some basic ideas from [7], Fan et al.[8] improved Theorem 1.1 and they proved the following

result.

Theorem 1.2 [8] Suppose that Ω ∈ B0,ν
q (Sn−1 ×Sm−1) with some q > 1 and ν ≥ 1. Then

the operator TΩ,I is bounded on Lp(Rn ×Rm) for m ≥ 2 and n ≥ 2 and 1 < p < ∞.

On the other hand, the theory of fractional integral operator also plays important roles

in harmonic analysis and PDE. Denote α = (α1, α2) with 0 < α1 < n and 0 < α2 < m.


