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Abstract. In this paper, we develop a conservative numerical method for the Cahn–
Hilliard equation with generalized mobilities on curved surfaces in three-dimensional
space. We use an unconditionally gradient stable nonlinear splitting numerical scheme
and solve the resulting system of implicit discrete equations on a discrete narrow band
domain by using a Jacobi-type iteration. For the domain boundary cells, we use the
trilinear interpolation using the closest point method. The proposing numerical al-
gorithm is computationally efficient because we can use the standard finite difference
Laplacian scheme on three-dimensional Cartesian narrow band mesh instead of dis-
crete Laplace–Beltrami operator on triangulated curved surfaces. In particular, we em-
ploy a mass conserving correction scheme, which enforces conservation of total mass.
We perform numerical experiments on the various curved surfaces such as sphere,
torus, bunny, cube, and cylinder to demonstrate the performance and effectiveness of
the proposed method. We also present the dynamics of the CH equation with constant
and space-dependent mobilities on the curved surfaces.
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1 Introduction

The Cahn–Hilliard (CH) equation is a fourth-order nonlinear parabolic partial differential
equation, originally proposed by Cahn and Hilliard [1, 2] to model phase separation of
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Figure 1: Snapshots of arrangement into (a) hexagonal and (b) inverted hexagonal patterns, depending on
membrane composition. Reprinted from T. Baumgart et al. [21] with permission from Nature Publishing Group.

binary alloys:

∂φ(x,t)

∂t
=∇·

{

M(φ(x,t))∇[F′(φ(x,t))−ǫ2∆φ(x,t)]
}

, (1.1)

where φ is the difference of two concentrations, M is a concentration-dependent mobil-
ity, F(φ) is a double-well potential, and ǫ is a constant related to the interfacial thick-
ness. The CH equation has been applied to model many important phenomena such
as tumor growth simulation [3], topology optimization [4, 5], inpainting of binary im-
ages [6], volume reconstruction [7], surface diffusion motion [8], phase separation [9,10],
microstructures with elastic inhomogeneity [11, 12], microphase separation of diblock
copolymers [13], and multiphase fluid flows [5, 14–18]. For the physical, mathematical,
and numerical derivations of the binary CH equation, see [19] and references therein. For
the basic principles and practical applications of the CH equation, see [20].

An experimental result has demonstrated that phase separations could occur on
curved surfaces such as lipid bilayer membranes [21]. Figs. 1(a) and (b) show ar-
rangements into hexagonal and inverted hexagonal patterns, depending on lipid bilayer
membrane composition, respectively. In [22], the authors rigorously analyzed the well-
posedness and convergence of a fully discrete finite element method for solving the CH
equation on a general surface. In [23], an efficient direct discretization method was de-
veloped for solving the Cahn–Hilliard equation on unstructured triangular surfaces. By
using a conservation law and transport formulae, the authors derive the CH equation on
evolving surfaces [24]. In [25], the authors developed a surface finite element method for
the numerical solution of the CH equation on hypersurfaces Γ in R

3. The authors in [26]
developed a finite difference method for the CH equation on implicit surfaces defined
using a level set function.

The main purpose of this article is to develop an efficient conservative finite difference
method for the CH equation with generalized mobilities on curved surfaces in three-


