Coefficient Estimates for a Class of m-fold Symmetric Bi-univalent Function Defined by Subordination

Guo Dong ${ }^{1}$, Tang Huo^{2}, Ao En ${ }^{2}$ and Xiong Liang-Peng ${ }^{3}$
(1. Foundation Department, Chuzhou Vocational and Technical College, Chuzhou, Anhui, 239000)
(2. School of Mathematics and Statistics, Chifeng University, Chifeng, Inner Mongolia, 024000)
(3. School of Mathematics and Statistics, Wuhan University, Wuhan, 430072)

Communicated by Ji You-qing

Abstract

In this paper, we investigate the coefficient estimates of a class of m-fold bi-univalent function defined by subordination. The results presented in this paper improve or generalize the recent works of other authors.

Key words: analytic function, univalent function, coefficient estimate, m-fold symmetric bi-univalent function, subordination
2010 MR subject classification: 30C45
Document code: A
Article ID: 1674-5647(2019)01-0057-08
DOI: 10.13447/j.1674-5647.2019.01.06

1 Introduction

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. We denote by \mathcal{S} the class of all functions $f(z) \in \mathcal{A}$ which are univalent in U.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in U)
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega \quad\left(|\omega|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right) .
$$

The inverse functions $g=f^{-1}$ is given by

$$
\begin{equation*}
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U. Let Σ denote the class of all bi-univalent functions in unit disk U.

For each functions $f \in \mathcal{S}$, the function

$$
h(z)=\sqrt{m} f\left(z^{m}\right) \quad\left(z \in U, m \in \mathbf{N}^{+}\right)
$$

is univalent and maps the unit disk U into a region with m-fold symmetry. A function is said to be m-fold symmetric (see [1] and [2]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad\left(z \in U, m \in \mathbf{N}^{+}\right) \tag{1.3}
\end{equation*}
$$

Analogous to the concept of m-fold symmetric univalent functions, here we introduced the concept of m-fold symmetric bi-univalent functions. For the normalized form of f given by (1.3), Srivastava et al. ${ }^{[3]}$ obtained the series expansion for f^{-1} as follows:

$$
\begin{align*}
g(\omega)= & f^{-1}(\omega) \\
= & \omega-a_{m+1} \omega^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] \omega^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] \omega^{3 m+1}+\cdots . \tag{1.4}
\end{align*}
$$

We denote by Σ_{m} the class of m-fold symmetric bi-univalent function in U. For $m=1$, the formula (1.4) coincides with the formula (1.2) of the class Σ. Some m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}, \quad\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}, \quad\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}}
$$

The class of bi-univalent functions was first introduced and studied by Lewin ${ }^{[4]}$ and was showed that $\left|a_{2}\right|<1.51$. Brannan and Clunie ${ }^{[5]}$ improved Lewin's results to $\left|a_{2}\right| \leq \sqrt{2}$ and later Netanyahu ${ }^{[6]}$ proved that $\max \left\{\left|a_{2}\right|\right\}=\frac{4}{3}$ if $f(z) \in \Sigma$. Recently, many authors investigated the estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for various subclasses of bi-univalent functions (see [7]-[9]). Not much is known about the bounds on general coefficient $\left|a_{n}\right|$ for $n \geq 4$. In the literature, only few works determine general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions (see [10]-[14]).

In this paper, let \mathcal{P} denote the class of analytic functions of the form

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots,
$$

and then

$$
\operatorname{Re}\{p(z)\}>0 \quad(z \in U)
$$

By [2], the m-fold symmetric function p in the class \mathcal{P} is given of the form:

$$
p(z)=1+p_{m} z+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots .
$$

