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1 Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. We denote by S the class of all

functions f(z) ∈ A which are univalent in U .

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ U)

and
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f(f−1(ω)) = ω

(
|ω| < r0(f), r0(f) ≥

1

4

)
.

The inverse functions g = f−1 is given by

f−1(ω) = ω − a2ω
2 + (2a22 − a3)ω

3 − (5a32 − 5a2a3 + a4)ω
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent

in U . Let Σ denote the class of all bi-univalent functions in unit disk U .

For each functions f ∈ S, the function

h(z) =
√
mf(zm) (z ∈ U, m ∈ N+)

is univalent and maps the unit disk U into a region with m-fold symmetry. A function is

said to be m-fold symmetric (see [1] and [2]) if it has the following normalized form:

f(z) = z +
∞∑
k=1

amk+1z
mk+1 (z ∈ U, m ∈ N+). (1.3)

Analogous to the concept of m-fold symmetric univalent functions, here we introduced

the concept of m-fold symmetric bi-univalent functions. For the normalized form of f given

by (1.3), Srivastava et al.[3] obtained the series expansion for f−1 as follows:

g(ω) = f−1(ω)

= ω − am+1ω
m+1 + [(m+ 1)a2m+1 − a2m+1]ω

2m+1

−
[
1

2
(m+ 1)(3m+ 2)a3m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
ω3m+1 + · · · . (1.4)

We denote by Σm the class of m-fold symmetric bi-univalent function in U . For m = 1,

the formula (1.4) coincides with the formula (1.2) of the class Σ . Some m-fold symmetric

bi-univalent functions are given as follows:(
zm

1− zm

) 1
m

, [− log(1− zm)]
1
m ,

[
1

2
log

(
1 + zm

1− zm

)] 1
m

.

The class of bi-univalent functions was first introduced and studied by Lewin[4] and was

showed that |a2| < 1.51. Brannan and Clunie[5] improved Lewin’s results to |a2| ≤
√
2

and later Netanyahu[6] proved that max{|a2|} =
4

3
if f(z) ∈ Σ . Recently, many authors

investigated the estimates of the coefficients |a2| and |a3| for various subclasses of bi-univalent
functions (see [7]–[9]). Not much is known about the bounds on general coefficient |an| for
n ≥ 4. In the literature, only few works determine general coefficient bounds |an| for the

analytic bi-univalent functions (see [10]–[14]).

In this paper, let P denote the class of analytic functions of the form

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · ,
and then

Re{p(z)} > 0 (z ∈ U).

By [2], the m-fold symmetric function p in the class P is given of the form:

p(z) = 1 + pmz + p2mz2m + p3mz3m + · · · .


