Coefficient Estimates for a Subclass of Bi-univalent Strongly Quasi-starlike Functions

Li Zong-TAO ${ }^{1}$ and Guo Dong ${ }^{2}$
(1. Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403)
(2. Foundation Department, Chuzhou Vocational and Technical College, Chuzhou, Anhui, 239000)

Communicated by Ji You-qing

Abstract

The aim of this paper is to establish the Fekete-Szegö inequality for a subclass of bi-univalent strongly quasi-starlike functions which is defined in the open unit disk. Furthermore, the coefficients a_{2} and a_{3} for functions in this new subclass are estimated.

Key words: bi-univalent function, bi-univalent strongly quasi-starlike function, coefficient estimate, subordination

2010 MR subject classification: 30C45, 30C50
Document code: A
Article ID: 1674-5647(2018)04-0303-06
DOI: 10.13447/j.1674-5647.2018.04.03

1 Introduction

Let H denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{+\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic on the open unit disk $U=\{z:|z|<1\}$.
Let S denote the subclass of H consisting of univalent functions in U. Also, let S^{*}, C and K denote, respectively, the well-known subclasses of H consisting of univalent functions which are starlike, convex and close-to-convex.

Further, let $S^{*}(\alpha)$ and $C(\alpha)$ be the subclasses of S consisting of starlike functions of order α and convex functions of order α respectively. Their analytic descriptions are

[^0]\[

$$
\begin{aligned}
& S^{*}(\alpha)=\left\{f(z) \in H \left\lvert\, \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha\right., 0 \leq \alpha<1\right\}, \\
& K(\alpha)=\left\{f(z) \in H \left\lvert\, \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha\right., 0 \leq \alpha<1\right\} .
\end{aligned}
$$
\]

In 1933, Fekete and Szegö ${ }^{[1]}$ showed that for $f \in S$ given by (1.1)

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}3-4 \mu, & \mu \leq 0 \\ 1+2 \exp \left\{\frac{-2 \mu}{1-\mu}\right\}, & 0 \leq \mu<1 \\ 4 \mu-3, & \mu \geq 1\end{cases}
$$

In [2], Liu defined the class $T(\beta)$: Let $f(z) \in H, 0<\beta \leq 1$. If

$$
\left|\arg \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right| \leq \frac{\beta \pi}{2}, \quad z \in U, g(z) \in S^{*}
$$

then $f(z) \in T(\beta)$ is called strong quasi-starlike function of order β.
The well-known Koebe's one-quarter theorem asserts that every function $f \in S$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z, \quad z \in U
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega, \quad|\omega|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}
$$

where

$$
\begin{equation*}
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{2}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f(z) \in H$ is called bi-univalent if only if both f and f^{-1} are normalized univalent functions on U. The class of bi-univalent functions is denoted by Σ. Lewin ${ }^{[3]}$ first introduced the class of bi-univalent functions and showed that $\left|a_{2}\right| \leq 1.51$. Since then, many different authors investigated the subclasses of the class of bi-univalent functions and obtained the upper bound of $\left|a_{2}\right|$ or $\left|a_{n}\right|(n>2)$ (see [4]-[10]).

Let

$$
g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots \in H
$$

which is analytic on the open unit disk $U=\{z:|z|<1\}$. If the following conditions are satisfied:

$$
\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\}>\alpha, \quad z \in U
$$

and

$$
\operatorname{Re}\left\{\frac{w G^{\prime}(w)}{G(w)}\right\}>\alpha, \quad w \in U
$$

where $0 \leq \alpha<1, G=g^{-1}$, then $g(z)$ is called the bi-univalent starlike analytic function of order α. The class of bi-univalent starlike analytic functions of order α is denoted by $S_{\Sigma}^{*}(\alpha)$.

Similarly, we defined a new class of analytic functions: Let $0<\beta \leq 1, f(z)=z+$ $\sum_{n=2}^{+\infty} a_{n} z^{n} \in \Sigma$. If $g \in S_{\Sigma}^{*}(0)$ such that

[^0]: Received date: Nov. 10, 2017
 Foundation item: The NSF (KJ2018A0833) of Anhui Provincial Department of Education and the Scientific Research Foundation (17X0413) of Guangzhou Civil Aviation College.

 E-mail address: lizt2046@163.com (Li Z T).

