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Abstract

We consider a control-constrained parabolic optimal control problem without Tikhonov

term in the tracking functional. For the numerical treatment, we use variational discretiza-

tion of its Tikhonov regularization: For the state and the adjoint equation, we apply

Petrov-Galerkin schemes in time and usual conforming finite elements in space. We prove

a-priori estimates for the error between the discretized regularized problem and the limit

problem. Since these estimates are not robust if the regularization parameter tends to zero,

we establish robust estimates, which — depending on the problem’s regularity — enhance

the previous ones. In the special case of bang-bang solutions, these estimates are further

improved. A numerical example confirms our analytical findings.
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1. Introduction

In this article we are interested in the numerical solution of the optimal control problem

min
u∈Uad

J0(u) with J0(u) :=
1

2
‖Tu− z‖2H . (P0)

Here, T is basically the (weak) solution operator of the heat equation, the set of admissible

controls Uad is given by box constraints, and z ∈ H is a given function to be tracked.

Often, the solutions of (P0) possess a special structure: They take values only on the bounds

of the admissible set Uad and are therefore called bang-bang solutions.

Theoretical and numerical questions related to this control problem attracted much interest

in recent years, see, e.g., [1–11]. The last four papers are concerned with T being the solution

operator of an ordinary differential equation, the former papers with T being a solution operator

of an elliptic PDE or T being a continuous linear operator. In [12], a brief survey of the content

of these and some other related papers is given at the end of the bibliography.

Problem (P0) is in general ill-posed, meaning that a solution does not depend continuously

on the datum z, see [3, p. 1130]. The numerical treatment of a discretized version of (P0) is

also challenging, e.g., due to the absense of formula (2.10) in the case α = 0, which corresponds

to problem (P0).
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Therefore we use Tikhonov regularization to overcome these difficulties. The regularized

problem is given by

min
u∈Uad

Jα(u) with Jα(u) :=
1

2
‖Tu− z‖2H +

α

2
‖u‖2U (Pα)

where α > 0 denotes the regularization parameter. Note that for α = 0, problem (Pα) reduces

to problem (P0).

For the numerical treatment of the regularized problem, we then use variational discretiza-

tion introduced by Hinze in [13], see also [14, Chapter 3.2.5]. The state equation is treated with

a Petrov-Galerkin scheme in time using a piecewise constant Ansatz for the state and piecewise

linear, continuous test functions. This results in variants of the Crank-Nicolson scheme for the

discretization of the state and the adjoint state, which were proposed recently in [15]. In space,

usual conforming finite elements are taken. See [12] for the fully discrete case and [16] for an

alternative discontinuous Galerkin approach.

The purpose of this paper is to prove a-priori bounds for the error between the discretized

regularized problem and the limit problem, i.e. the continuous unregularized problem.

We first derive error estimates between the discretized regularized problem and its continu-

ous counterpart. Together with Tikhonov error estimates recently obtained in [17], see also [12],

one can establish estimates for the total error between the discretized regularized solution and

the solution of the continous limit problem, i.e. α = 0. Here, second order convergence in space

is not achievable and (without coupling) the estimates are not robust if α tends to zero. Using

refined arguments, we overcome both drawbacks. In the special case of bang-bang controls, we

further improve those estimates.

The obtained estimates suggest a coupling rule for the parameters α (regularization pa-

rameter), k, and h (time and space discretization parameters, respectively) to obtain optimal

convergence rates which we numerically observe.

The paper is organized as follows.

In the next section, we introduce the functional analytic description of the regularized

problem. We recall several of its properties, such as existence of a unique solution for all α ≥ 0

(thus especially in the limit case α = 0 we are interested in), an explicit characterization of

the solution structure, and the function space regularity of the solution. We then introduce

the Tikhonov regularization and recall some error estimates under suitable assumptions. In the

special case of bang-bang controls, we recall a smoothness-decay lemma which later helps to

improve the error estimates for the discretized problem.

The third section is devoted to the discretization of the optimal control problem. At first,

the discretization of the state and adjoint equation is introduced and several error estimates

needed in the later analysis are recalled. Then, the analysis of variational discretization of the

optimal control problem is conducted.

The last section discusses a numerical example where we observe the predicted orders of

convergence.

2. The Continuous Optimal Control Problem

2.1. Problem setting and basic properties

Let Ω ⊂ R
d, d ∈ {2, 3}, be a spatial domain which is assumed to be bounded and convex

with a polygonal boundary ∂Ω. Furthermore, a fixed time interval I := (0, T ) ⊂ R, 0 < T < ∞,


