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Abstract

In some applications, there are signals with piecewise structure to be recovered. In this

paper, we propose a piecewise ISS (P ISS) method which aims to preserve the piecewise

sparse structure (or the small-scaled entries) of piecewise signals. In order to avoid selecting

redundant false small-scaled elements, we also implement the piecewise ISS algorithm in

parallel and distributed manners equipped with a deletion rule. Numerical experiments

indicate that compared with aISS, the P ISS algorithm is more effective and robust for

piecewise sparse recovery.
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1. Introduction

In this paper, we consider recovering a sparse signal x∗ ∈ Rn from its noisy linear measure-

ments

b = Ax∗ + e, (1.1)

where b ∈ Rm is a measurement vector, A ∈ Rm×n is a measurement matrix, and e ∈
N(0, σ2In) is Gaussian noise. The sparse vector x∗ has s ≤ m < n nonzero entries. A widely

used method to perform this reconstruction is the Basis Pursuit, i.e., to solve the following

minimization problem

min
x

‖x‖1, s.t.Ax = b. (1.2)

The key of recovering a signal in this setting is to find the support of the signal, i.e., find the

set S satisfing supp(x∗) = S, it is named as “exact support recovery”. In some applications,

the signal is indeed “piecewise sparse”. For example, the problem of the decomposition of

texture part and cartoon part of image in [20], i.e., b = Anxn +Atxt where n and t represent

the cartoon and texture. It is assumed that both parts can be represented in some given

dictionaries, thus xn and xt are two sparse vectors. The coefficient vector x = (xT
n ,x

T
t )

T is

“piecewise” sparse vector. Another example is the problem of reconstructing a surface from

scattered data in approximation space H =
⋃N

i=1 Hj , where Hj ⊆ Hj+1 are principal shift

invariant (PSI) spaces generated by a single compactly supported function [18], the fitting

surface is g =
∑N

i=1 gi, gi ∈ Hi with gi =
∑ni

j=1 c
i
jφ

i
j . The coefficients c = (c1, . . . , cN )T (by N
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pieces ci = (ci1, . . . , c
i
ni
)T ) is the vector to be determined. Due to the property of PSI spaces,

the coefficients to be determined by l1 minimization in [18] are “piecewise” sparse structured,

i.e., each ci ∈ Rni is a sparse vector in Hi.

To be general, we recover a sparse signal x = (xT
1 , . . . ,x

T
N )T which is piecewise sparse

structured by a partition of support set S = (Si)
N
i=1. Denote the corresponding partition of

D = {1, . . . , n} as D = (Di)
N
i=1. It is clear that Si ⊆ Di. Then we recover N sub-signals

xi (xi ∈ Rni is si-sparse vector on set Di, where si = |Si|) for i = 1, . . . , N , respectively and

simultaneously. We call this type of signal as “piecewise sparse” vector, denoted by (s1, . . . , sN )-

sparse vector. According to the piecewise structure of the signal x, the measurement matrix A

is also structured as A = [A1, . . . , AN ] where Ai ∈ Rm×ni . Then the linear measurements (1.1)

can be rewritten as

b =
N
∑

i=1

Aix
∗
i + e.

Based on this, we provide the definition of piecewise sparse vector:

Definition 1.1. Suppose the m-sample vector b is the linear superposition of N components

with some additive noise,

b =
N
∑

i=1

bi + e. (1.3)

Furthermore, assume that each bi can be sparsely represented in a basis Ai, i.e.,

bi = Aixi, i = 1, . . . , N,

where xi is a sparse vector. We define the vector x = (xT
1 , . . . ,x

T
N )T as a piecewise sparse

vector. In particular, if the piecewise sparsity is provided, i.e., number of nonzero entries of xi

is si for each i, then we denote the piecewise sparse vector x = (xT
1 , . . . ,x

T
N )T as (s1, . . . , sN )-

piecewise sparse vector.

d1 = 100 d2 = 100

· · ·

d3 = d4 = d5 = · · · = d100 = 1

Fig. 1.1. Example of block sparse vector.

Remark 1.1. It is necessary to claim that the piecewise sparse vector is quite different from the

block sparse vector mentioned in [14–16,26]. A block s-sparse vector x = (xT [1], . . . , xT [N ])T is

assumed to have at most s blocks with nonzero entries while each block x[l] (l = 1, . . . , N) is not

necessary sparse. Furthermore, a block sparse vector is not necessary sparse. See the example

in [16] (Fig. 1.1). In this example, 2 nonzero blocks out of 100 blocks correspond to 200 nonzero

elements out of 298 elements.A piecewise sparse vector x = (xT
1 , . . . ,x

T
N )T is partitioned into

N components and it is assumed that every xi ∈ Rni containing nonzero entries is sparse. See

the following example in Fig. 1.2, there are 100 parts are each part has one nonzero element.

It is clear that a piecewise sparse vector must be a sparse vector in general meaning.

Remark 1.2. Note that the sub-vectors x∗
i (i = 1, . . . , N) in equation bσ =

∑N

i=1 Aix
∗
i + e

are correlated to each other, thus these sub-vectors x∗
i (i = 1, . . . , N) cannot be recovered

independently.


