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Abstract

This work develops a fully discrete implicit-explicit finite element scheme for a parabolic-

ordinary system with a nonlinear reaction term which is known as the FitzHugh-Nagumo

model from physiology. The first-order backward Euler discretization for the time deriva-

tive, and an implicit-explicit discretization for the nonlinear reaction term are employed

for the model, with a simple linearization technique used to make the process of solving e-

quations more efficient. The stability and convergence of the fully discrete implicit-explicit

finite element method are proved, which shows that the FitzHugh-Nagumo model is ac-

curately solved and the trajectory of potential transmission is obtained. The numerical

results are also reported to verify the convergence results and the stability of the proposed

method.
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1. Introduction

The mathematical modeling of cardiac electrical activity has gained a lot attention in

medicine and science. It allows reaearchers to better understand biophysical phenomena and

contributes to new diagnostic techniques and drug development. In general, existing models can

be classified as microscopic or macroscopic scale models. The Grandi-Pasqualini-Bers (GPB)

model [6, 11], one of the microscopic scale models, can match experimental data well though

discrepancies exist in cellular and tissue levels [10]. At macroscopic scale, there exists two

categories. One is the so-called bidomain model [8, 12, 24], which is a system of two nonlinear

partial differential equations distinguished from intracellular and extracellular potentials, and

coupled with a system of ordinary differential equations representing the ionic currents activi-

ty. The other is the simplified mathematical model, the so-called monodomain model [28, 31],
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which only deals with a transmembrane potential, coupled with the same system of ordinary

differential equations. The monodomain model has the following form [4]:











∂u

∂t
= ∇ · (K∇u) + Iion(u, v) + Is,

∂v

∂t
= F (u, v),

(1.1)

where u is a normalized transmembrane potential, v is a time dependent recovery variable, K

is the diffusion coefficient, Is is the current on behalf of the external stimuli and Iion(u, v) is

the ionic current across the membranes.

Many methods had been used to solve the coupled system (1.1). Yamada and Nozaki

in [36] developed an asymptotic method to solve the FitzHugh-Nagumo model, they found

bound states of two or three nerve impulses. Zhang [37] used the element-free Galerkin (EFG)

method to solve the system and studied the effects of complex heart geometry, nonuniform

fiber orientation, and inhomogeneous materials to electrical propagation. Trangenstein used

the operator splitting and mesh refinement method for the FitzHugh-Nagumo model in [34].

And Shuaiby [31] proposed a method which combines a Galerkin finite element method and

the operator splitting technique, where the behavior of the excitation and the repolarization

phase are shown. In [26], Rahman and Isiam solved the FitzHugh-Nagumo model using the

Galerkin finite element method. Rogers and Mcculloch [25] developed a hybrid collocation-

Galerkin finite element method for the FitzHugh-Nagumo model and simulated the effects on

cardiac impulse propagation. The existence and uniqueness of the solution to system (1.1) were

proved in [20, 21]. The theoretical analysis of the semi-discrete space approximation using the

finite element method for the reaction-diffusion systems are presented in [19, 30]. In addition,

some related works on the implicit-explicit schemes for the Navier-Stokes equations and other

high-accuracy numerical methods are given in [13–16,18].

In this paper, we present a fully discrete implicit-explicit finite element scheme to solve the

FitzHugh-Nagumo monodomain model, which satisfies the following equations on a bounded

domain Ω with initial and boundary conditions:



































∂u

∂t
= ∇ · (K∇u) +G(u)u− v (x, y, t) ∈ Ω× (0, T ],

∂v

∂t
= ε(βu − γv − δ) (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = ψ(x, y), v(x, y, 0) = ϕ(x, y) (x, y) ∈ Ω,

u(x, y, t) = 0, v(x, y, t) = 0 (x, y, t) ∈ ∂Ω× (0, T ],

(1.2)

where Iion(u, v) = G(u)u − v,G(u)u = (1 − u)(u − a)u, 0 < a < 1, Is = 0 and F (u, v) =

ε(βu− γv − δ) with εβ > 0, εγ, εδ ≥ 0 in (1.2) for the FitzHugh-Nagumo model.

The remainder of this paper is organized as follows. Section 2 gives the continuous and

discrete formulation of system (1.2). In Section 3, the stability and convergence of the implicit-

explicit fully discrete finite method are established. The numerical results are given in Section

4. We give a brief summary in the Section 5. Throughout this paper, (·, ·) denotes the inner

product on L2(Ω), and we also give the norm notations: ‖ · ‖ = ‖ · ‖L2(Ω), ‖ · ‖k = ‖ · ‖Hk(Ω),

‖ · ‖0,µ = (
∫ T

0 ‖ · ‖2µdt)
1/2.


