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Abstract

We consider the problem of minimizing the average of a large number of smooth compo-

nent functions over one smooth inequality constraint. We propose and analyze a stochastic

Moving Balls Approximation (SMBA) method. Like stochastic gradient (SG) methods, the

SMBA method’s iteration cost is independent of the number of component functions and

by exploiting the smoothness of the constraint function, our method can be easily imple-

mented. Theoretical and computational properties of SMBA are studied, and convergence

results are established. Numerical experiments indicate that our algorithm dramatically

outperforms the existing Moving Balls Approximation algorithm (MBA) for the structure

of our problem.
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1. Introduction

In this article, we consider the following smooth convex optimization problem:

f∗ := min{f(x) : x ∈ C}, (1.1)

where

f(x) =
1

p

p
∑

i=1

fi(x), C := {x ∈ R
n : g(x) ≤ 0},

and fi, g : R
n 7→ R are smooth convex functions. Problems of this form often arise in machine

learning and statistics. A classical example is least-squares regression,

min
x∈C

1

p

p
∑

i=1

(aTi x− bi)
2,

where ai ∈ R
n and bi ∈ R are the data samples associated with a regression problem and

C := {x ∈ R
n : ‖x‖2 − τ ≤ 0, τ > 0}. Another important example is logistic regression,

min
x∈C

1

p

p
∑

i=1

log
(

1 + exp(−biaTi x)
)

,

where ai ∈ R
n and bi ∈ {−1, 1} are the data samples associated with a binary classification

problem and the constraint can be the same as C mentioned above.
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For a function f, we denote by ∇f its gradient, let F 1,1
l (C) be the class of convex functions

which are continuously differentiable on C with lipschitz constant l > 0, i.e.,

‖∇f(x)−∇f(y)‖ 6 l‖x− y‖, ∀x, y ∈ C.

Further more if f is two times continuously differentiable, then we can choose (see [14]) l =

max
x∈C
‖∇2f(x)‖. We denote f ∈ S1,1

µ,l (C) if f ∈ F 1,1
l (C) and for any x, y ∈ C, µ ≥ 0 we have:

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ

2
‖x− y‖2,

namely f is strongly convex on C. When f ∈ S1,1
µ,l (C) in problem (1.1), a standard method

of solving (1.1) is the full gradient method [14] for simple sets (here we say C is a simple set

means that we can solve the following problem (1.2) easily). Given an initial point x0 ∈ C, set

xC(xk; l) = argmin
x∈C

{

f(xk) + 〈∇f(xk), x− xk〉+
l

2
‖x− xk‖2

}

, (1.2)

gC(xk; l) = l(xk − xC(xk; l)),

then the full gradient method uses the following update rule for k = 1, 2, . . .

xk+1 = xk −
1

l
gC(xk; l).

The full gradient method satisfies [14, Theorem 2.2.8]

‖xk − x∗‖2 = O((1 − µ

l
)k),

here we write ak = O(bk) means for nonnegative scalars {ak}, {bk}, there exist constants

c1 > c2 such that c2bk ≤ ak ≤ c1bk for every k. The accelerated full gradient method can be

found in [15], as well as other extensions, variants and applications, see [3,6,18]. A shortcoming

of the full gradient method is that its iteration cost of computing ∇f(xk) scales linearly in p.

An effective alternative is the stochastic gradient (SG) method. The main advantage of SG

is that they have an iteration cost which is independent of p, this is very suited for modern

problems where p can be very large. The basic SG method uses the following form

xk+1 = ΠC(xk − αk∇fik(xk)),

where ΠC denotes the Euclidean orthogonal projection onto C, αk ≥ 0 is the step-size and the

index ik is sampled uniformly from {1, . . . , p}. The randomly chosen gradient ∇fik(xk) obtains

an unbiased estimate of the full gradient ∇f(xk). Under standard assumptions [13], and for

a properly chosen decreasing step-size sequence {αk}, the SG methods have an expected sub-

optimality for convex objectives of

E[f(xk)]− f(x∗) = O(
1√
k
),

and for strongly convex objective functions we have

E[f(xk)]− f(x∗) = O(
1

k
).

We note that in these rate the expectations are taken with respect to the selection of ik.


