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Abstract. In this study, Newton linearized finite element methods are presented for
solving semi-linear parabolic equations in two- and three-dimensions. The proposed

scheme is a one-step, linearized and second-order method in temporal direction,

while the usual linearized second-order schemes require at least two starting val-
ues. By using a temporal-spatial error splitting argument, the fully discrete scheme

is proved to be convergent without time-step restrictions dependent on the spatial
mesh size. Numerical examples are given to demonstrate the efficiency of the meth-

ods and to confirm the theoretical results.
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1. Introduction

In this paper, we present a Newton linearized finite element method as well as its

unconditionally optimal error estimate for the following semi-linear parabolic equa-

tions














∂u

∂t
−∆u = f(u), x ∈ Ω, 0 < t ≤ T,

u(x, 0) = u0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ Rd, (d = 2 or 3) is a convex and bounded polygon in R2 or polyhedron in

R3, u(x, t) is an unknown function defined in Ω×[0, T ], and f(u) ∈ C2(R) is a nonlinear

function. Those semi-linear parabolic equations are widely used to model much natural
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phenomena in mechanics, thermodynamics and optics [1,2]. Thus, the equations have

attracted plenty of researchers in theoretical and numerical analysis, e.g., [3–15].

The most widely used the second-order numerical schemes for the time-discretiza-

tion of the semi-linear parabolic equations are the linearized Crank-Nicolson method

[16–25],implicit-explicit multi-step methods [26–28], linearized BDF methods [29–

32] and so on. In actual applications, these linearized schemes require at least two

starting values. One is obtained by the initial value and the other is obtained by some

iterative methods or some additional numerical schemes. As a result, some additional

computational cost is needed by using the previous mentioned numerical methods.

In the present paper, we present a Newton linearized finite element method for

numerically solving the semi-linear parabolic equations, which only needs one start

value. Moreover, the fully discrete scheme is proved to be unconditionally convergent.

Such convergent result implies that the error estimate holds without certain time-step

restrictions dependent on the spatial mesh size. Our inspiration of the proof comes

from the recent temporal-spatial error splitting argument, which was firstly proposed

by Li and Sun in [33, 34] and was successfully applied to analyse some classical time-

dependent PDEs [35–39] and some time fractional reaction-diffusion equations [40–

42]. We remark that the unconditional convergence result can also be obtained by

combing the present Newton linearized method and the other spacial discretization,

e.g., mixed finite element method, finite difference method and so on.

We construct the rest of our paper as follows. In Section 2, we establish the Newton

linearized FEM schemes for solving Eq. (1.1) and give main convergent results. In

Section 3, we prove the convergence of our methods. In Section 4, we give some

numerical studies that demonstrate our theoretical convergence results. Finally, we

conclude our paper in Section 5.

2. The Newton linearized FEM and main results

In this section, the two-level Newton linearized Galerkin finite element schemes

and main results are given.

Following the standard FEM discretization [43], let Th be a conforming and shape

regular simplicial triangulation or tetrahedra of Ω and let h = maxK∈Th{diam K} be

the mesh size. Denote Vh is the finite-dimensional subspace of H1
0 (Ω), which is made of

continuous piecewise polynomials of degree r (r ≥ 1) on Th. Let τ = T/N be time step,

where N is a fixed integer. Denote tn = nτ , tn− 1

2

= 1
2(tn + tn−1) and um = u(x, tm).

For a sequence of functions {φn}, n = 1, 2, · · · , N , we write

Dτφ
n =

φn − φn−1

τ
, φ̄n =

1

2
(φn + φn−1). (2.1)

With the above notations, a Newton linearized Galerkin FEM is to find Un
h ∈ Vh such


