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Abstract. We are concerned with the derivation of Poincaré-Friedrichs type inequa-
lities in the broken Sobolev space W 2,1(Ω; Th) with respect to a geometrically con-

forming, simplicial triagulation Th of a bounded Lipschitz domain Ω in R
d, d ∈ N.

Such inequalities are of interest in the numerical analysis of nonconforming finite
element discretizations such as C0 Discontinuous Galerkin (C0DG) approximations

of minimization problems in the Sobolev space W 2,1(Ω), or more generally, in the

Banach space BV 2(Ω) of functions of bounded second order total variation. As
an application, we consider a C0DG approximation of a minimization problem in

BV 2(Ω) which is useful for texture analysis and management in image restoration.

AMS subject classifications: 65K10, 65N30, 68U10
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1. Introduction

Poincaré-Friedrichs type inequalities for broken Sobolev spaces play an important

role in the numerical analysis of nonconforming finite element discretizations of mini-

mization problems in Sobolev spaces and associated partial differential equations (cf.,

e.g., [6–8,12,13]). In this paper, given a bounded Lipschitz domain Ω in R
d, d ∈ N, we

derive such inequalities for the broken Sobolev space W 2,1(Ω;Th) with respect to a ge-

ometrically conforming, simplicial triangulation Th of Ω. They are based on Poincaré-

Friedrichs type inequalities for the space BV 2(Ω) of functions of bounded second or-

der total variation [3, 4]. As an application, we consider a C0 Discontinuous Galerkin

(C0DG) approximation of a minimization problem in BV 2(Ω) which is used in image

processing for texture analysis and management.
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The paper is organized as follows: In Section 2, we introduce the Banach spaces

BV (Ω) and BV 2(Ω) of functions of bounded first and second order total variation and

recall some of its properties that pertain to the derivation of the Poincaré-Friedrichs

type inequalities, whereas Section 3 is devoted to Poincaré-Friedrichs type inequalities

in BV 2(Ω). In Section 4, we define the broken Sobolev space W 2,1(Ω;Th) in terms

of a broken Hessian involving a recovery operator from the broken Sobolev space

W 2,1(Ω;Th) into the linear space of d×d matrices with element-wise polynomial entries.

We prove the boundedness of the recovery operator in the L1 norm (Theorem 4.1). In

Section 5, we first show that for functions in W 2,1(Ω;Th) the second order total varia-

tion can be bounded from above by the W 2,1(Ω;Th) seminorm and obtain a compact-

ness result in the sense that bounded sequences in W 2,1(Ω;Th) contain a subsequence

converging weakly∗ in BV 2(Ω) (Theorem 5.1). We then derive two Poincaré-Friedrichs

type inequalities for the broken Sobolev space W 2,1(Ω;Th) (Theorem 5.2). Finally, in

Section 6 we consider the C0DG approximation of a minimization problem in BV 2(Ω)
which can be applied to texture analysis and management in image restoration [4, 5]

and prove that the sequence of C0DG approximations in W 2,1(Ω;Th) contains a sub-

sequence converging weakly∗ in BV 2(Ω) to a solution of the original minimization

problem (Theorem 6.1).

2. Functions of bounded first and second order total variation

For a bounded Lipschitz domain Ω ⊂ R
d, d ∈ N, with boundary Γ = ∂Ω we refer to

Cm
0 (Ω), 0 ≤ m ≤ ∞, as the Banach space of m-times continuously differentiable scalar

functions with compact support in Ω. Likewise, Cm
0 (Ω;Rd), 0 ≤ m ≤ ∞, stands for

the Banach space of m-times continuously differentiable vector-valued functions with

compact support in Ω and Cm
0 (Ω;Rd×d), 0 ≤ m ≤ ∞, for the Banach space of m-times

continuously differentiable matrix-valued functions with compact support in Ω.

Moreover, we will use standard notation from Lebesgue and Sobolev space theory

[14]. In particular, for Lipschitz subsets D ⊆ Ω̄ and 1 ≤ p ≤ ∞ we denote the Lp-norm

by ‖ · |Lp(D). We further refer to Wm,p(D),m ∈ N, as the Sobolev spaces with norm

‖ · ‖Wm,p(D), and seminorm | · |Wm,p(D), and to W
m− 1

p
,p
(Γ′),Γ′ ⊂ ∂D, as the associated

trace spaces. W
m,p
0 (D) stands for the closure of C∞

0 (D) in the Wm,p-norm. Sobolev

spaces W s,p(D) with broken index s ∈ R+ are defined by interpolation. In case p = 2
we will write Hm(D) instead of Wm,2(D). The spaces L2(D) and Hm(D) are Hilbert

spaces with inner products denoted by (·, ·)L2(D) and (·, ·)Hm(D). Further, H−m(D)
refers to the dual space of Hm

0 (D) with 〈·, ·〉m,D denoting the dual product.

The spaces Lp(D;Rd), 1 ≤ p ≤ ∞, stand for the Banach spaces of vector-valued

functions q = (q1, . . . , qd)
T with norm ‖q‖Lp(D;Rd) := (

∫

D
|q|p dx)

1

p for 1 ≤ p < ∞,

where |q| := (q · q)
1

2 and p · q =
∑d

i=1 piqi, and ‖q‖L∞(D;Rd) := max1≤i≤d ‖qi‖L∞(D)

for p = ∞. Likewise, we refer to Lp(Ω;Rd×d), 1 ≤ p ≤ ∞, as the Banach spaces of

matrix-valued functions q = (qij)
d
i,j=1 with norm ‖q‖Lp(D;Rd×d) := (

∫

D
|q|p dx)

1

p for


