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Abstract. The simulation of Rayleigh waves is important in a variety of geophysical
applications. The computational challenge is the fact that very fine mesh is neces-
sary as the waves are concentrated at the free surface and decay exponentially away
from the free surface. To overcome this challenge and to develop a robust high or-
der scheme for the simulation of Rayleigh waves, we develop a mortar discontinuous
Galerkin method with staggered hybridization. The use of the mortar technique al-
lows one to use fine mesh in only a local region near the free surface, and use coarse
mesh in most of the domain. This approach reduces the computational cost signifi-
cantly. The staggered hybridization allows the preservation of the strong symmetry of
the stress tensor without complicated construction of basis functions. In particular, the
basis functions are piecewise polynomial without any continuity requirement, and the
coupling of the basis functions is performed by using carefully chosen hybridized vari-
ables. The resulting scheme is explicit in time, and only local saddle point system are
solved for each time step. We will present several benchmark problems to demonstrate
the performance of the proposed method.
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1 Introduction

Accurate elastodynamic simulations are of critical importance in a variety of geophysical
applications. The staggered grid finite difference methods [21,23,29] is a class of efficient
numerical schemes for accurate elastic wave computations, and they are widely used in
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a number of applications. For computational domains with irregular geometries, such as
non-flat topography, the accuracy of these methods diminishes. For many realistic appli-
cations, one needs accurate and efficient computational techniques that can be applied
to domains with complex geometries or non-flat interfaces. The discontinuous Galerkin
(DG) methods can be used to tackle these computational challenges. The DG method
approximates the solution by using piecewise polynomial functions defined on unstruc-
tured meshes, which can triangulate complex domain geometries. For example, various
DG methods are proposed in [1,4,13-16,18,19,22,24,25,27,28,30].

The use of staggered mesh for computational wave propagation has shown its promi-
nence in applications. Motivated by the staggered grid finite difference schemes, the
staggered discontinuous Galerkin (SDG) method is developed with the goal of achieving
high order accuracy on domains with irregular geometries and keeping the advantages
of using staggered meshes. The SDG methods are successfully applied to both the acous-
tic wave equations [7,8,20] and the elastic wave equations [6,9] as well as other appli-
cations [3,17,31]. The use of staggered mesh in discontinuous Galerkin method offers
several additional advantages such as energy conservation, optimal rate of convergence
and low dispersion error [2,9]. Another key feature of the proposed method in this pa-
per is the use of staggered hybridization [6]. This staggered hybridization techniques
allows one to define the polynomial basis functions locally on each cell in the mesh with-
out enforcing any continuity condition. The coupling of the basis functions is defined by
using suitable staggered hybridized variables. One advantage of this technique is that
the symmetry of the stress tensor can be enforced strongly on irregular meshes. We re-
mark that the idea of hybridization has been used successfully in discontinuous Galerkin
methods [5,10-12, 25, 26]. The technique of staggered hybridization shares many of the
advantages of hybridization, such as superconvergence, and gives additional advantages
for elastic wave simulations as mentioned above. Furthermore, the proposed method
gives explicit time-stepping scheme. In particular, one needs only to solve local saddle
point system for each time step. So, the time-stepping is very efficient.

The focus of this paper is efficient simulations of Rayleigh waves. Accurate and ef-
ficient computations of Rayleigh waves has important applications in geophysics. From
the computational point of view, the simulation of Rayleigh waves is difficult in the sense
that a very fine mesh is necessary as the wave is concentrated only on the free surface
and decays exponentially in the direction away from the free surface. We also remark
that a fine mesh in the whole computational domain is needed even though the wave
is only concentrated near the surface. To overcome this computational challenge, we
propose the use of mortar technique together with our discontinuous Galerkin method
using staggered hybridization. The main idea is to use a fine computational mesh near
the surface of the domain, and use a coarse mesh in the rest of the domain. The region
of fine mesh is a thin layer near the surface. Thus, the overall degrees of freedom in the
whole domain is much reduced. In order to couple the unknown at the interface of the
fine and the coarse meshes, we apply the mortar technique. More precisely, we define an
additional mortar variable and an additional jump condition to enforce the continuity of



