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Abstract. Recently, there are numerous work on developing surrogate models under
the idea of deep learning. Many existing approaches use high fidelity input and solu-
tion labels for training. However, it is usually difficult to acquire sufficient high fidelity
data in practice. In this work, we propose a network which can utilize computational
cheap low-fidelity data together with limited high-fidelity data to train surrogate mod-
els, where the multi-fidelity data are generated from multiple underlying models. The
network takes a context set as input (physical observation points, low fidelity solu-
tion at observed points) and output (high fidelity solution at observed points) pairs. It
uses the neural process to learn a distribution over functions conditioned on context
sets and provide the mean and standard deviation at target sets. Moreover, the pro-
posed framework also takes into account the available physical laws that govern the
data and imposes them as constraints in the loss function. The multi-fidelity physics-
constrained network (MFPC-Net) (1) takes datasets obtained from multiple models
at the same time in the training, (2) takes advantage of the available physical informa-
tion, (3) learns a stochastic process which can encode prior beliefs about the correlation
between two fidelity with a few observations, and (4) produces predictions with un-
certainty. The ability of representing a class of functions is ensured by the property
of neural process and is achieved by the global latent variables in the neural network.
Physical constraints are added to the loss using Lagrange multipliers. An algorithm
to optimize the loss function is proposed to effectively train the parameters in the net-
work on an ad hoc basis. Once trained, one can obtain fast evaluations of the entire
domain of interest given a few observation points from a new low-and high-fidelity
model pair. Particularly, one can further identify the unknown parameters such as
permeability fields in elliptic PDEs with a simple modification of the network. Several
numerical examples for both forward and inverse problems are presented to demon-
strate the performance of the proposed method.
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1 Introduction

Many applications in science and engineering may encounter parameterized computa-
tional models, such as optimization of complex systems with uncertainty or inverse mod-
eling. A common challenge lies in obtaining sufficient high-fidelity data, which requires
expensive measurements or simulations for a large number of parameter instances. Many
approaches have been proposed to develop surrogate models, such as global and local
model reduction techniques [1,2,4,6–9,15]. The idea is to construct computational cheap
reduced order models, however, the simulation data obtained may be low-fidelity and
these approaches may face the challenge in generalization.

On the other hand, numerous works have been proposed to learn surrogate models
given some data. In the case when only the data are available without knowing the un-
derlying physics, one can treat it as a pure data-driven supervised learning task using
methods like Gaussian process (GP) [5, 20]. To obtain reliable results, one usually needs
sufficient high-fidelity training data. However, if the random coefficients in the equation
possess uncertainties and are high dimensional, or if the underlying map is nonlinear,
GP may be inefficient and computationally expensive due to the curse of dimensional-
ity. In the past few years, deep neural networks (DNNs) [22] have attracted increasing
interest due to the universal function approximation property and their ability to model
high-dimensional input-output relationships. Numerous studies are proposed to solve
partial differential equations and have shown great performance in various applications.
For example, learning the evolution operator of the PDE from data [27], approximating
important physical quantities of the PDE [12], solving heterogeneous elliptic problems on
varied domains [26], designing efficient algorithms to handle multiscale multiphase flow
problems [25] and using the idea of multiscale model reductions for learning [3, 23, 24].

When the physical equations/laws are also available, it is important to incorporate
these information in the design of surrogate deep neural networks to speed up learning.
Physics informed neural networks (PINN) [18, 19] were proposed to realize the idea and
have been successfully applied to solve PDE problems subject to the law of physics that
governs the data. On the other hand, for the case without data labels in the training, there
have also been developments on physics-constrained surrogates for stochastic PDEs [28]
just using the information on physical relationships. These approaches either require a
large amount of high-fidelity data to train, or need to know the full high-fidelity informa-
tion of coefficients in the model, such as random coefficients in the equation throughout
the entire domain. This is usually hard to realize in practical problems, for example, in
some optimization problems when large amounts of high-fidelity data are required, or
when the coefficients are very difficult to measure.

A more practical case is that only a limited number of high-fidelity observations are
available, but sufficient low-fidelity approximations can be obtained via fast simulation.
Multi-fidelity methods combine high-and low-fidelity data, and can be employed to effi-
ciently achieve desired accuracy [10, 17]. In [16], the authors present a composite neural
network (MPINNs) which can be trained utilizing multi-fidelity data. The architecture of


