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1 Introduction

Fractional derivative is as old as calculus. In 1695, L’Hospital presented the question: what

is the meaning of
dnf

dxn
if n =

1

2
? Since then, many researchers tried to study fractional

derivatives and have obtained a large amount of results. Fractional differential and integral

equations play increasingly important roles in modeling of engineering and science prob-

lems, as shown in [1]–[5]. In many situations, these models provide more suitable results

than analogous models with integer derivatives, see [6] for details. In most of the available

literatures (see [7]–[13]), the existence results for fractional differential equations obtained

by use of fixed point theorem.

In this paper, we investigate the existence and multiplicity of positive solutions for eigen-

value problem of nonlinear fractional differential equations:
CDα

0+u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1, (1.1)

u(0) = u′(1) = u′′(0) = 0, (1.2)
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where 2 < α ≤ 3 is a real number, CDα
0+ is the Caputo derivative, λ is a positive parameter

and a(t) ∈ C([0, 1], [0, ∞)), f(t, u) ∈ C([0, 1] × [0, ∞), [0, ∞)). Firstly, we establish

intervals of the parameter λ, which yield the conclusion that the problem (1.1)-(1.2) has a

positive solution. Then we give some conditions about f(t, u), which also yield the existence

of positive solutions using of fixed point theorem. At the end, by placing certain restrictions

on the nonlinearity, we prove the existence of at least one, at least two, at least three, and

infinitely many positive solutions of the problem (1.1)-(1.2) by applying some known fixed

point theorems.

2 Preliminaries

Definition 2.1 The Riemann-Liouville fractional integral of order α > 0 of a function

f : (0, ∞) → R is given by

Iα0+f(t) =
1

Γ (α)

∫ t

0

(t− s)α−1f(s)ds

provided that the right hand side is pointwise defined on (0, ∞).

Definition 2.2 The Caputo’s derivative of order α > 0 of a continuous function f :

(0, ∞) → R is given by

CDα
0+f(t) =

1

Γ (n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1
ds,

where n− 1 < α ≤ n, provided that the right hand side is pointwise defined on (0, ∞).

Lemma 2.1 [10] Given f ∈ C([0, 1]), and 2 < α ≤ 3, the unique solution of
CDα

0+u(t) + f(t) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0

is

u(t) =

∫ 1

0

G(t, s)f(s)ds,

where

G(t, s) =


(α− 1)t(1− s)α−2 − (t− s)α−1

Γ (α)
, 0 ≤ s ≤ t ≤ 1,

t(1− s)α−2

Γ (α− 1)
, 0 ≤ t ≤ s ≤ 1.

Proposition 2.1 The Green’s function G(t, s) satisfies the following conditions:

(1) 0 < G(t, s) ≤ G(1, s), t, s ∈ (0, 1);

(2) min
1
4≤t≤

3
4

G(t, s) ≥ 1

4
max
0≤t≤1

G(t, s) =
1

4
G(1, s), 0 < s < 1.

Lemma 2.2 [11] Let X be a Banach space, K ⊆ X is a cone, and Ω1,Ω2 ⊂ K are two

relatively non-empty open sets, 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2. Suppose that F : Ω2 −→ K is a

completely continuous operator such that either

(1) ∥F (x)∥ ≤ ∥x∥, x ∈ ∂Ω1; ∥F (x)∥ ≥ ∥x∥, x ∈ ∂Ω2, or


