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Abstract. We propose a new method to deal with the essential boundary conditions
encountered in the deep learning-based numerical solvers for partial differential equa-
tions. The trial functions representing by deep neural networks are non-interpolatory,
which makes the enforcement of the essential boundary conditions a nontrivial mat-
ter. Our method resorts to Nitsche’s variational formulation to deal with this diffi-
culty, which is consistent, and does not require significant extra computational costs.
We prove the error estimate in the energy norm and illustrate the method on several
representative problems posed in at most 100 dimension.
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1 Introduction

Recently there has been a surge of interests in solving partial differential equations by
deep learning-based numerical methods [6,11,12,16,17,19,25,29,32,33,40,41,44–46], and
we refer to [15] for a review for this direction. These methods allow for the composi-
tional construction of new approximation sets from various neural networks. Such con-
structions are usually free of a mesh so that they are in essence meshless methods [5]. The
trial functions in the approximation sets are in general non-interpolatory, which makes
the implementation of the essential boundary conditions not an easy task. There are two
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main approaches to handle the essential boundary conditions in deep learning-based nu-
merical methods. One is the conforming method, which exploits a supplementary neural
network to make the functions in the trial set satisfy the boundary conditions exactly.
This is the approach firstly proposed in [30, 31] and recently further developed in [6, 29].
The conforming method usually involves an accurate evaluation of the distance function
or a cut-off function, which is not easy for domain with complicated boundary geome-
try; see, e.g., [6]. Another one is the penalty method, which is a very general concept
and belongs to the so-called nonconforming method [17, 40, 41, 45, 46]. An additional
surface term is introduced into the variational formulation to enforce the boundary con-
ditions. However, great care has to be taken to balance the different terms in the func-
tional framework. Otherwise, this may cause problems for the existence and uniqueness
of the solution [2, 8]. Moreover, the penalty method usually leads to a sub-optimal rate
of convergence as shown in [3] for finite element methods and as shown in [5] for the
generalized finite element methods and meshless methods.

Compared to the penalty method, the Lagrange multiplier method treats the essential
boundary conditions as a constraint in the minimization. This technique has been used
to deal with the essential boundary conditions in finite element method [4] and wavelet
method [13]. The optimal rate of convergence may be achieved if the approximation
function spaces are chosen properly, which relies on the so-called inf-sup condition [4,13].
The Lagrange multiplier method may also be used to enforce boundary conditions in
the neural-network based method provided that the resulting constrained minimization
problem can be efficiently solved.

An efficient method for imposing the essential boundary conditions has been pro-
posed by Nitsche in the early 1970’s [38] in the finite element method. It was quite
unknown for many years, and was revived in [42] by STENBERG. He revealed the in-
teresting relation between Nitsche’s method and certain stabilized Lagrangian multiplier
methods. More recent efforts on Nitsche’s method have been devoted to deal with the
elliptic interface problems and the unfitted mesh problems; we refer to [10] for a review
of the progress in this direction. In the context of the meshless method, Nitsche’s idea has
been proved to be an efficient approach to deal with the essential boundary conditions
in the framework of a particle partition of unity method [23] as well as the generalized
finite element method [35].

In this work, we incorporate the idea of Nitsche into the framework of Deep Ritz
Method [17] to deal with the essential boundary conditions. This new algorithm is called
Deep Nitsche Method. It also imposes the boundary conditions in a nonconforming way
as the penalty method. In contrast to the penalty method, this method is consistent if
the exact solution is smooth enough. The method is based on the energy formulation of
Nitsche [38], which does not involve a Lagrange multiplier. Hence we need not solve
a constrained minimization problem, and the stochastic gradient descent (SGD) method
may be used to solve the resulting minimization problem. To analyze the method, we
exploit Nitsche’s energy formulation instead of the Euler-Lagrange equations associated
with the minimization problem, which in general does not exist for the deep Nitsche


