# Existence and Multiplicity of Positive Solutions for Fractional Differential Equation with Parameter* 

Xiaoling Han ${ }^{1, \dagger}$, Shaolin Zhou ${ }^{1}$ and Ruilian An ${ }^{1}$


#### Abstract

In this paper, by using the fixed point theorem for a cone map, we study the existence and multiplicity of positive solutions for a class of fractional differential equation with parameter.


Keywords Fractional differential equation, Green function, Cone.
MSC(2010) 34A08, 34B18.

## 1. Introduction

Fractional calculus has played a significant role in engineering, science, economy, and other fields, during the last few decades. There has been a significant development in ordinary and partial differential equations involving fractional derivatives. There are many important results about the existence of solutions for fractional differential equation, see $[1,2,5-8,10,11]$ for more details.

In [1], Bai and Lü considered the positive solutions for boundary value problem of fractional order differential equation

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+f(t, u(t))=0, t \in(0,1) \\
u(0)=0, u(1)=0
\end{array}\right.
$$

where $1<\alpha \leq 2, f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous.
In this paper, under different growth conditions of $f$, we obtain the existence and multiplicity of positive solutions for boundary value problem of fractional differential equation with parameter

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+\lambda f(t, u(t))=0, t \in(0,1)  \tag{1.1}\\
u(0)=0, u(1)=0
\end{array}\right.
$$

where $1<\alpha \leq 2, f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous, $\lambda>0$ is a parameter.
Remark 1.1. When $\alpha=2$, problem (1.1) is reduced to the problem of paper [4].

We make the following hypotheses:

[^0](A ) $f(t, u):[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous and there exists $g \in$ $C((0,+\infty),(0,+\infty)), q_{1}, q_{2} \in C((0,1),(0,+\infty))$ such that $q_{1}(t) g(y) \leq f\left(t, t^{\alpha-2} y\right) \leq$ $q_{2}(t) g(y), t \in[0,1], y \in[0,+\infty)$.

For the convenience, we take some notations. Let

$$
g_{0}=\lim _{y \rightarrow 0^{+}} \frac{g(y)}{y}, \quad \quad g_{\infty}=\lim _{y \rightarrow+\infty} \frac{g(y)}{y}
$$

$i_{0}=$ numbers of zeros in the set $\left\{g_{0}, g_{\infty}\right\} ; \quad i_{\infty}=$ numbers of infinities in the set $\left\{g_{0}, g_{\infty}\right\}$.

$$
M(p)=\max _{0 \leq y \leq p}\{g(y)\}, \quad m(p)=\min _{\frac{(\alpha-1) p}{16} \leq y \leq p}\{g(y)\}
$$

The tool theorem is following:
Theorem 1.1. Let $E$ be a Banach space, $K \subset E$ is a cone, $\Omega_{1}, \Omega_{2}$ are bounded open subsets of $E, 0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, suppose that $A: K \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K$ is completely continuous and satisfies :
(i) $\|A x\| \leq\|x\|, x \in K \bigcap \partial \Omega_{1}$, and $\|A x\| \geq\|x\|, x \in K \bigcap \partial \Omega_{2}$; or
(ii) $\|A x\| \geq\|x\|, x \in K \bigcap \partial \Omega_{1}$, and $\|A x\| \leq\|x\|, x \in K \bigcap \partial \Omega_{2}$;

Then $A$ has a fixed point in $K \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Definition 1.1. We call $D_{0+}^{\alpha} f(x)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d x}\right)^{n} \int_{0}^{x} \frac{f(t)}{(x-t)^{\alpha-n+1}} d t, \alpha>0, n=[\alpha]+$ 1 is the Riemann-Liouville fractional derivative of order $\alpha .[\alpha]$ denotes the integer part of number $\alpha$.
Definition 1.2. We call $I_{0+}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t, x>0, \alpha>0$ is Riemann-Liouville fractional integral of order $\alpha$.

## 2. Preliminaries

Lemma 2.1 (Lemma 2.3, [1]). The solutions of problem

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+\lambda f(t, u(t))=0, t \in(0,1) \\
u(0)=0, u(1)=0
\end{array}\right.
$$

is equivalent to the solutions of the integral equation

$$
\begin{equation*}
u(t)=\lambda \int_{0}^{1} G(t, s) f(s, u(s)) d s \tag{2.1}
\end{equation*}
$$

where

$$
G(t, s)= \begin{cases}\frac{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1 \\ \frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1\end{cases}
$$

Lemma 2.2 (Proposition 1, [5]). The Green function $G(t, s)$ has the following properties:
(i) $G(t, s) \in C([0,1] \times[0,1])$ and $G(t, s)>0, \forall t, s \in(0,1)$;


[^0]:    ${ }^{\dagger}$ the corresponding author.
    hanxiaoling9@163.com(X. Han), zhoushaolin@nwnu.edu.cn(S. Zhou), 1258038557@qq.com(R. An)
    ${ }^{1}$ Department of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China
    *Supported by National Natural Science Foundation of China (11561603).

