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New Proofs of Monotonicity of Period Function
for Cubic Elliptic Hamiltonian∗
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Abstract In [1] S.-N. Chow and J. A. Sanders proved that the period function
is monotone for elliptic Hamiltonian of degree 3. In this paper we significantly
simplify their proof, and give a new way to prove this fact, which may be used
in other problems.
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1. Introduction

Consider the cubic elliptic Hamiltonian function H(x, y) = y2

2 + P3(x), there P3 is
a polynomial of degree 3, the corresponding quadratic Hamiltonian system is

dx

dt
= y,

dy

dt
= −P ′3(x).

Suppose that the origin is a non-degenerate center, so we can write P3(x) = 1
2x

2 −
a
3x

3, where a 6= 0. If we write the closed orbit, surrounding the origin, by

γh ⊂ H−1(h) = {(x, y)|H(x, y) = h},

then, from the first equation of the system, we can write the period function by

T (h) =

∮
γh

1

y
dx, (1.1)

where y = y(x, h) is defined by H(x, y) = h. Note that by the scaling (x, y) 7→
(xa ,

y
a ), the period function does not change, hence without loss of generality we can

suppose that γh is defined by

H(x, y) =
y2

2
+A(x) = h, A(x) =

x2

2
− x3

3
, (1.2)

and the corresponding Hamiltonian system is

dx
dt = y,

dy
dt = −x+ x2 = x(x− 1).

(1.3)
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The continuous family of ovals is {γh ⊂ H−1(h), 0 < h < 1
6}, γh shrinks to the

center at (x, y) = (0, 0) when h → 0+, and γh expand to the homoclinic loop Γ

related to the saddle at (x, y) = (1, 0) when h→ 1
6

−
.

Theorem 1.1 (Theorem 3.8 of [1]). The period function T (h) is monotone for
0 < h < 1

6 .

For more information about the study of period functions, see Section 2.4 of [2],
for example.

2. A simple proof of Theorem 1.1

We first give a very simple proof of Theorem 1.1 by using Picard-Fuchs equation.
Let

Ik(h) =

∮
γh

xky dx, k = 0, 1, 2, · · · , (2.1)

then by using yyh = 1 and (2.1) we have

I ′k(h) =

∮
γh

xk

y
dx, k = 0, 1, 2, · · · . (2.2)

Lemma 2.1. The following equalities hold:

5I0 = 6hI ′0 − I ′1,

7I1 = I0 + (6h− 1)I ′1,
(2.3)

where Ik = Ik(h), I ′k = I ′k(h).

Proof. From (2.1), (1.2) and (2.2) we have

Ik =

∮
γh

xky2

y
dx =

∮
γh

xk(2h− x2 + 2
3x

3)

y
dx = 2hI ′k − I ′k+2 +

2

3
I ′k+3.

On the other hand, by using integration by parts and the fact that dy = x2−x
y dx

we have

Ik =

∮
γh

xkydx = − 1

k + 1

∮
γh

xk+1dy =
1

k + 1

∮
γh

xk+1(x− x2)

y
dx =

I ′k+2 − I ′k+3

k + 1
.

(2.4)
Eliminating I ′k+3 from the above two equalities, we obtain

(2k + 5)Ik = 6hI ′k − I ′k+2.

Taking k = 0, 1, we find

5I0 = 6hI ′0 − I ′2,

7I1 = 6hI ′1 − I ′3.
(2.5)

By integrating (x − x2)y dx = y2 dy along γh we get I1(h) ≡ I2(h), hence the first
equation of (2.5) gives the first equality of (2.3). Taking k = 0 in (2.4) we have
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