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Traveling Wave Solutions of a Fourth-order
Generalized Dispersive and Dissipative Equation*
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Abstract In this paper, we consider a generalized nonlinear forth-order dis-
persive-dissipative equation with a nonlocal strong generic delay kernel, which
describes wave propagation in generalized nonlinear dispersive, dissipation and
quadratic diffusion media. By using geometric singular perturbation theory
and Fredholm alternative theory, we get a locally invariant manifold and use
fast-slow system to construct the desire heteroclinic orbit. Furthermore we
construct a traveling wave solution for the nonlinear equation. Some known
results in the literature are generalized.
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1. Introduction

In this paper, we are concerned with the existence of traveling wave solution for the
generalized fourth-order dispersive and dissipative equation
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where n ≥ 1, α, β, γ, s and δ are constant coefficients. u is a function of space x
and time t, α is the nonlinear convective coefficient, β is the diffusion coefficient,
γ is the dispersion coefficient, s is the backward quadratic diffusion coefficient and

δ is the stable coefficient. Here, partial derivatives
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represent to dispersion effect term, back-

ward quadratic diffusion term and the stable term, respectively. We take f ∗ u to
be the following spatial-temporal convolution
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f(x− y, t− s)u(y, s)dyds,
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here the function f satisfies the normalization conditions

f(t) ≥ 0 for t ≥ 0, and

∫ t
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+∞

f(x, t)dxdt = 1,

such that the kernel f doesn’t affect the spatial-temporal uniform steady states.
The Eq.(1.1) describes wave propagation in generalized nonlinear dispersive,

dissipation and quadratic diffusion media. It can be discovered in the context of
Benard-Marangoni convection in shallow layers, thin liquid films, and so on [7].
Eq.(1.1) has many applications, for example, is governing evolution equation for
the propagation of weak nonlinear waves in fluid-filled thick viscoelastic tubes for
arterial blood flow. We point out that, if the parameters are chosen as different
values, some famous equations can be derived from Eq.(1.1). For instance, if n = 0,
f ∗ u = u, β = s = δ = 0, Eq.(1.1) becomes the Korteweg-de Vries (KdV, for short)
equation [8]. As is known to that the KdV equation has been widely studied due
to its significance in stratified internal wave, physical contexts, plasma physics and
its applications in weakly nonlinear dispersive physical system [2,5,9,15,16]. When
n = 0, f ∗ u = u, s = ε = 0, Eq.(1.1) becomes the Burgers-KdV equation, which
was first proposed the standard form by Feudel and Steudel [4] when they proved
that the equation has no prolongation structure.

Mansour [11] considered a fourth order Burgers-KdV equation and proved the
existence of traveling wave solutions. By using the dynamical systems theory, es-
pecially based upon the geometric singular perturbation theory and invariant man-
ifold theorem, Mansour [12] constructed the traveling wave solutions of a nonlinear
dispersive-dissipative equation. In many cases, differential equations with time de-
lay can reflect the real natural phenomena. The delay is an significant factor that
can not be ignored, which can make the steady state of the system change. Shang
and Du [14] discussed the existence of traveling wave solutions to a nonlinear dis-
persive and dissipative equation
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where n ≥ 1, α, β, γ, and s are constant coefficients.
If the time delay disappears in Eq.(1.1), i.e., f ∗ u = u, Mansour [12] found the

existence of homolinic orbit of Eq.(1.1) by applying the method of the Melnikov
function. We will get the existence of the heteroclinic orbit by using the invariant
manifold on the phase plane. In the later part of the article, we also discuss the
Eq.(1.1) with spatial-temporal delay, which describes the state that the system
variables depend on the system at a certain time or in a certain historical period.
If we choose δ = 0, Eq.(1.1) becomes the Eq.(1.2) discussed by Shang and Du [14].
Our results agree well with the corresponding ones in [14]. In the case that Eq.(1.1)
without delay, Shang and Du [14] obtained the existence of the heteroclnic orbit
by constructing the triangular invariant set. However, our approach overcomes
the difficulties that Eq.(1.1) adds the fourth order term by constructing the three
pyramid invariant to get the heteroclinic orbit.

The remaining part of this article is organized as following. In section 2, we
will construct the existence of traveling wave solutions of Eq.(1.1) without delay.
In section 3, we will investigate Eq.(1.1) with a nonlocal delay. Using geometric
singular perturbation theory [3,6] and Fredholm theorem, we get a locally invariant
manifold and seek the heteroclinic orbit in this slow manifold. Furthermore we
construct a traveling wave solution of Eq.(1.1). In section 4, we give a conclusion.
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