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Dynamics of the Stochastic Chemostat Model with
Monod-Haldane Response Function*
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Abstract This paper is devoted to the asymptotic dynamics of stochastic
chemostat model with Monod-Haldane response function. We first prove the
existence of random attractors by means of the conjugacy method and further
construct a general condition for internal structure of the random attractor,
implying extinction of the species even with small noise. Moreover, we show
that the attractors of Wong-Zakai approximations converges to the attractor
of the stochastic chemostat model in an appropriate sense.

Keywords Stochastic chemostat model, random attractors, Wong-Zakai ap-
proximation, conjugacy method.

MSC(2010) 60H10, 37L10, 35B40.

1. Introduction

Chemostat refers to a basic piece of laboratory apparatus used for the continuous
culture of microorganisms. It occupies a central place in mathematical ecology and
has played an important role in many fields [4, 12, 16, 22, 30–32, 34]. It can also
model waste water treatment [13,26] or study recombinant problems in genetically
altered microorganisms [17, 18]. Derivation and analysis of chemostat models are
well documented in [9, 29,33] and references therein.

The classic chemostat model with single species and single limiting substrate
takes the form

dS(t)

dt
= (S0 − S(t))D − µ(S(t))x(t), (1.1)

dx(t)

dt
= −Dx(t) + µ(S(t))x(t), (1.2)

where S(t) and x(t) denote concentrations of the nutrient and the microbial biomass,
respectively; S0 denotes the volumetric dilution rate and D is the dilution rate. The
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growth rate of the microbial population is represented by the function µ(S), which
is generally assumed to be non-negative.

However, there are very strong restrictions as the real world is non-autonomous
and stochastic, and this justifies the analysis of stochastic chemostat model. In
general, there exist several alternatives to model randomness and stochasticity. For
example, one can replace the dilution rate D by D + αẆ (t) and thus the origi-
nal system (1.1)-(1.2) is replaced by the following stochastic differential equations
understood in the Itô sense

dS(t) = [(S0 − S(t))D − µ(S(t))x(t)]dt+ α(S0 − S(t))dW (t), (1.3)

dx(t) = [−Dx(t) + µ(S(t))x(t)]dt− αx(t)dW (t), (1.4)

where W (t) is a standard Brownian motion defined in a complete probability space
(Ω,F , {Ft}t≥0, P ), and α > 0 is its intensity. Biologically the model does not seem
completely realistic due to the fact that the substrate S(t) in the corresponding
stochastic chemostat model (1.3)-(1.4) can take negative. Alternatively, following
the idea in [15,19], one can obtain the stochastic chemostat model

dS(t) = [(S0 − S(t))D − µ(S(t))x(t)]dt− αS(t)dW (t), (1.5)

dx(t) = [−Dx(t) + µ(S(t))x(t)]dt− αx(t)dW (t). (1.6)

Recently, the existence of the random attractor associated to the random dynam-
ical system generated by the solution of system (1.3)-(1.4) (or (1.5)-(1.6)) was stud-
ied in [5–7] by using a function Holling type-II, µ(S(t)) = mS(t)/(a+S(t)), where a
is the half-saturation constant and m is the maximal consumption rate of the nutri-
ent and also the maximal specific growth rate of microorganisms. In particular, au-
thors in [6] proved the existence of the global random attractor of system (1.5)-(1.6)
with Holling type-II respond function, and further shown that the internal structure
of the attractor consists of singleton subsets as long as D̄ = D + α2/2 > m, which
means that the microorganisms become extinct. In fact, one can choose α, large
enough, such that D̄ > m (see Figure 2 in [6]). In case D̄ < m, one cannot ensure
the persistence of the microorganism (see Figure 1 in [6]).

As far as we know, no report has been found on the existence of random at-
tractors of stochastic chemostat model under small noise. This fact inspires us to
further explore relevant dynamics of system (1.5)-(1.6) in this respect. Besides,
some experiments and observations indicate that not only insufficient nutrient but
also excessive nutrient may inhibit the growth of a microbial population in the
chemostat [1, 3, 20]. This situation suggested a non-monotonic response function,
so-called Monod-Haldane function, to model such growth. Thus system (1.5)-(1.6)
becomes the following specified form

dS(t) = [(S0 − S(t))D − mS(t)x(t)

a+ S(t) +KS2(t)
]dt− αS(t)dW (t), (1.7)

dx(t) = [−Dx(t) +
mS(t)x(t)

a+ S(t) +KS2(t)
]dt− αx(t)dW (t), (1.8)

where the term KS2(t) describes the inhibitory effect of the substrate at high con-
centrations. By using the well-known conversion between Itô and Stratonovich
senses, we obtain the following stochastic chemostat with Monod-Haldane function

dS(t) = [−D̄S(t)− mS(t)x(t)

a+ S(t) +KS2(t)
+ S0D]dt− αS(t) ◦ dW (t), (1.9)
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