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Near-invariant Tori on Exponentially Long Time
for Poisson systems*

Fuzhong Cong1,†, Jialin Hong2 and Rui Wu3

Abstract This paper deals with the near-invariant tori for Poisson systems.
It is shown that the orbits with the initial points near the Diophantine torus
approach some quasi-periodic orbits over an extremely long time. In particular,
the results hold for the classical Hamiltonian system, and in this case the drift
of the motions is smaller than one in the past works.
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1. Problem, preliminaries and result

The problem of stability of Hamiltonian systems occupies a crucial place in the
field of dynamic systems. As well known, KAM theory shows that most of quasi-
periodic motions of the integrable Hamiltonian systems are persistent under a small
perturbation. The name comes from the initials of Kolmogorov, Arnold and Moser
who laid the foundation of the theory [1, 3, 6]. In 1977s, Nekhoroshev presented
a global result. He showed that under a perturbation of order ε of an integrable
Hamiltonian system with the steepness condition, the action variable of an arbitrary
orbit vary only in the order of εb over a time interval of the order of exp(ε−a),
where a and b are positive constants [7]. Now one refers to Nekhoroshev’s theorem
as effective stability. Later on, much mathematics are devoted to studying KAM
theory and effective stability, and a great deal of significant results are obtained,
see [2, 4, 8–10] and the references therein.

One remarkable problem is that the above works only localize on classical Hamil-
tonian systems which are defined on an even-dimensional manifold. Many systems
in applications can not be written as Hamiltonian forms, for example, Lotka-Voterra
model [11], the motion equation of a rigid body without any external forces, ABC
flow and so on. The reason is that their phase spaces are of odd-dimensional. Note

†the corresponding author.
Email address: congfz67@126.com(F. Cong), hjl@lsec.cc.ac.cn(J. Hong), wu-
rui0221@sina.com(R. Wu)

1Office of Mathematics, Fundamental Department, Air Force Aviation Univer-
sity, Changchun, Jilin 130022, China

2State Key Laboratory of Scientific and Engineering Computing, Insti-
tute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
P.O.Box 2719, Beijing 100080, China

3Department of Mathematics, Changchun University of Finance and Eco-
nomics, Changchun, Jilin 130122, China
∗The authors were supported by Natural Science Foundation of China
(11171350 , 10371128)and the grant of JJKH20190412KJ.

http://dx.doi.org/10.12150/jnma.2019.385


386 F. Cong, J. Hong & R. Wu

that these systems possess general Poisson structures. The problem considered in
this paper is to generalize the stability theory of Hamiltonian systems to Poisson
systems defined on odd-dimensional spaces.

We first introduce the concept of Poisson systems. Moreover, some fundamental
properties are given without proofs. For details, see [5].

Let B : D × Tn → R(m+n)×(m+n) be a smooth matrix-valued function, where
D ⊂ Rm be a bounded, connected and closed region, and Tn = Rn/Zn. For all
z = (y, x) ∈ D × Tn, set

{F,G}(z) = ∇F (z)TB(z)∇G(z). (1.1)

Lemma 1.1. The bracket defined in (1.1) is bilinear, skew-symmetric and satisfies

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0, (1.2)

{F ·G,H} = F · {G,H}+G · {F,H} (1.3)

if and only if BT = −B and for all i, j, k,

m+n∑
l=1

(
∂bij(z)

∂zl
blk(z) +

∂bjk(z)

∂zl
bli(z) +

∂bki(z)

∂zl
blj(z)

)
= 0. (1.4)

Definition 1.1. If B(z) satisfies BT = −B and (1.4), formula (1.1) is said to
represent a general Poisson bracket. The corresponding system

·
z= B(z)∇H(z) (1.5)

is said to be a Poisson system with Hamiltonian H.

Definition 1.2. A transformation ϕ : U → Rm+n (where U is an open set in
Rm+n) is called a Poisson change with respect to the bracket (1.1), if the structure
matrix B satisfies

ϕ′(z)B(z)ϕ′(z)T = B(ϕ(z)).

Lemma 1.2. If B(z) is the structure matrix of a Poisson bracket, the flow φt(z)
of (1.5) is a Poisson change.

Lemma 1.3. Let φt(z) be a flow of (1.5). Acting on a function F : Rm+n → R,
the following formula holds:

d

dt
F (φt(z)) = {F,G}(φt(z)).

Definition 1.3. Let F and G be two smooth functions defined on some open subset
of Rm+n. F and G are said to be in involution, if {F,G} = 0.

From now on, we begin to describe the main result of this paper. Consider a
Poisson system

·
z= B(y)∇H(z) (1.6)

defined on some complex neighborhood of D×Tn in Cm×Cn, where B is a structure
matrix independent of x.

Through this paper, we assume that yj , j = 1, · · · ,m, and xk, k = 1, · · · , n,
respectively, satisfy the involution condition:

{yi, yj} = 0, i, j = 1, · · · ,m, (1.7)
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