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Trajectory Segmentation and Symbolic
Representation of Dynamics of Delayed Recurrent

Inhibitory Neural Loops*

Jianfu Ma1 and Jianhong Wu1,†

Abstract We develop a general symbolic dynamics framework to examine the
dynamics of an analogue of the integrate-and-fire neuron model of recurrent
inhibitory loops with delayed feedback, which incorporates the firing procedure
and absolute refractoriness. We first show that the interaction of the delay, the
inhibitory feedback and the absolute refractoriness can generate three basic
types of oscillations, and these oscillations can be pinned together to form
interesting coexisting periodic patterns in the case of short feedback duration.
We then develop a natural symbolic dynamics formulation for the segmentation
of a typical trajectory in terms of the basic oscillatory patterns, and use this
to derive general principles that determine whether a periodic pattern can and
should occur.
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1. Introduction

We propose to develop a theoretical framework that allows us to reformulate the
delayed feedback as an induced action on a segment of symbols, so we can develop
a systematic approach to look at the co-existence of multiple stable periodic os-
cillations in network of neurons with delayed feedback. For this purpose, we start
with a recurrent inhibitory loop that consists of an excitatory neuron E and an
inhibitory neuron I, where neuron E gives off collateral branches and excites the
inhibitory neuron I, which in turn inhibits the firing of neuron E, in a delay time.
The incorporation of time delays is necessary, as these are intrinsic properties of
both biological and artificial loops due to axonal conduction times, distances of
interneurons, the finite switching speeds of amplifiers and the passive propagation
of potentials down the dendrites of neurons [6, 7, 21,22,24,28,29].

The simple recurrent inhibitory loop and its represented coupled network of
neuron populations have been used to study how the interaction of the excitatory
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and the inhibitory neurons, the connection strength and the time delay affects the
network’s computational performance [1, 2, 15, 26, 27]. In particular, the studies
[9, 10, 18] focus on the dynamical behaviors of the excitatory neuron in the loops
and hence their model equation takes the form of a scalar delay differential equation
that can also arise in modeling a single neuron with delayed self-feedback. The
model in [9, 10, 18] takes a quite general form involving membrane potential of the
excitatory neuron, ionic currents, an applied current, the effects of the inhibitory
feedback on the membrane potential of the excitatory neuron, and the probability
that a certain channel is open. In these models, the delay can be large in comparison
with the intrinsic spiking period when we consider the recurrent inhibitory loop as a
simplification of a large polysynaptic loop or neuron population network. In such a
network, many factors can contribute to the delay and consequently the propagation
time through the network may be considerably longer than would be estimated from
the conduction velocities.

Foss and Milton [9] used the well-known Hodgkin-Huxley model to study recur-
rent inhibitory loops and found multiple coexisting attracting periodic solutions by
computer simulations. Unfortunately, the intrinsic complexity of the conductance-
based neuron models such as the Hodgkin-Huxley model makes it difficult for
a detailed qualitative and theoretical analysis and hence reduced neuron mod-
els such as integrate-and-fire models become desirable from a theoretical point of
view. On the other hand, Chow et. al. [3] showed that under some assumptions,
the full conductance-based dynamics can be approximated by the integrate-and-
fire neuron model Cv′(t̃) = −gL(v − vL) + Ĩ0 − F (t̃, τ̃), with the reset condition:
v(t̃+) = vr when v(t̃−) = ϑ̃. Such a system can be further normalized and sim-
plified as V ′(t) = −V + I0 − F (t, τ) by re-scaling t = t̃/τm, τ = τ̃ /τm and letting
V = (v − vr)/(ϑ̃ − vr) with τm = C/gL. Under this normalization procedure, the
V (t) is reset to Vr = 0 whenever it reaches the threshold potential ϑ = 1.

The reset condition has so far been considered as an impulse: the potential is
reset immediately after it reaches the threshold. In real biological neurons, however,
the reset process involves a firing procedure followed by the absolute refractory
period. It turns out that the firing procedure and the absolute refractoriness have
very important impact on the timing of the inhibitory feedback, and this impact
is particularly significant if the feedback is delayed. Indeed, numerical results [18]
showed that an integrate-and-fire model incorporating the firing procedure and
absolute refractoriness is capable of generating a large number of asymptotically
stable periodic solutions with predictable patterns of oscillations, in agreement with
some earlier studies in [9, 13,23,25].

In this series of papers, we hope to develop a systematical approach to rigorously
analyze the mechanism for the observed multistability in recurrent inhibitory loops.
In particular, we shall show how the interaction of the time lag, the inhibition,
the firing procedure and the absolute refractory period can generate some basic
and analytically trackable types of oscillations, and how these basic oscillations
can then be pinned together to form a large class of periodic patterns. We shall
also illustrate by numerical simulations that these periodic patterns can be easily
observed. In subsequent work, we will link the periodic patterns exhibited in our
simple integrate-and-fire model to a variety of rhythms displayed in the nervous
system.

The rest of this paper is organized as follows: we first formulate the integrate-
and-fire model of recurrent inhibitory loops by incorporating the firing procedure
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