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On the Integrability and Equivalence of the Abel
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Abstract In this paper, first of all we give the necessary and sufficient con-
ditions of the center of a class of planar quintic differential systems by using
reflecting function method, and provide a simple proof of this results. Sec-
ondly, We use the reflecting integral to research the equivalence of the Abel
equation and some complicated equations and derive their center conditions
and discuss their integrability.
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1. Introduction

In this paper, we will consider the Abel equations of the form

dr

dθ
= A(θ)r2 +B(θ)r3, (1.1)

where A(θ), B(θ) are continuous functions. The main reason why we are interested
in this Abel equations is that they are closely related to planar vector fields. There
are many classes of planar systems which are in some sense equivalent to some Abel
equations [1–4,6,7,14,15]. The first class is planar polynomial systems of the form
x′ = −y + p, y′ = x + q with homogeneous polynomials p and q of degree k. The
second class is the Liénard systems : x′ = y, y′ = −f(x)y − g(x), they can be
transformed to the Abel (1.1) [15]. The third class is the systemx′ = −y + x(Pn(x, y) + P2n(x, y)),

y′ = x+ y(Pn(x, y) + P2n(x, y)),
(1.2)

where Pk(x, y) =
∑
i+j=k pijx

iyj , pi,j (i, j = 0, 1, 2, ..., k, k = n, 2n) are real con-
stants.
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In polar coordinates, the system (1.2) becomes

dρ

dθ
= (Pn(cos θ, sin θ) + P2n(cos θ, sin θ)ρn)ρn+1. (1.3)

Taking r = ρn, then (1.3) becomes (1.1) with A(θ) = nPn, B(θ) = nP2n. The origin
is a center for the two-dimensional system (1.2) if and only if all solutions of the
Abel equation (1.1) starting near the origin are periodic with period 2π , i.e., all
the solutions nearby are closed: r(2π) = r(0). In this case, we say that r = 0 is a
center of the Abel equation.

The Abel equations have been investigated over the years. In the papers [1–4,6,
7,14,15] and others, the authors Alwash and Lloyd presented some center conditions
for the Abel equations and give the composition conditions [2, 3] under which the
Able equation has a center. Yomdin [6] and Yang [15] give an asymptotic expansion
of the solutions of Abel equations and some center conditions.

In this paper, in the first section, we use reflecting function method [9, 17, 18]
to derive the center conditions for a class of planar quintic differential systems and
provide a simple proof of this results. In the second section, we give the integrability
conditions of some polynomial differential equations by using its reflecting integrals
[17], and establish the equivalence between the polynomial equations and some
complicated equations and judge when do these complicated equations have a center
at the origin.

Now, I briefly introduce the concept of the reflecting function and reflecting
integral which will be used throughout the rest of this article.

Consider differential system

x′ = X(t, x), (t ∈ I ⊂ R, x ∈ D ⊂ Rn, 0 ∈ I) (1.4)

which has a continuously differentiable right-hand side and general solution ϕ(t; t0, x0).

Definition 1.1. [9] For system (1.4), F (t, x) := ϕ(−t, t, x) is called its Reflecting
function.

By this, for any solution x(t) of (1.4), we have F (t, x(t)) = x(−t), F (0, x) = x
and F (t, x) is a reflecting function of system (1.4), if and only if, it is a solution of
the Cauchy problem

Ft + FxX(t, x) +X(−t, F ) = 0, F (0, x) = x. (1.5)

By [9, 18], if system (1.4) is 2ω-periodic with respect to t, and F (t, x) is its
reflecting function, then T (x) := F (−ω, x) is the Poincaré mapping of (1.4) over
the period [−ω, ω], and the solution x = ϕ(t;−ω, x0) of (1.4) defined on [−ω, ω] is
2ω-periodic if and only if x0 is a fixed point of T (x). Thus, we can use the method
of reflecting function to study the existence and stability of the periodic solutions
of the differential systems (1.4) [5, 9–13,17,18].

Definition 1.2. [9] If the reflecting functions of two differential systems coincide
in their common domain, then these systems are said to be Equivalent.

Definition 1.3. [17] If ∆(t, x) is a unequal identically to zero solution of the
partial differential system

∆t(t, x) + ∆x(t, x)X(t, x)−Xx(t, x)∆(t, x) = 0, (1.6)

then ∆(t, x) is called a Reflecting integral of (1.4).
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