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Abstract. We consider the following constrained Rayleigh quotient optimization prob-
lem (CRQopt):
minoT Av  subject to vTv=1and CTo=b,
veR"

where A is an n x n real symmetric matrix and C is an #n x m real matrix. Usually, m «n.
The problem is also known as the constrained eigenvalue problem in literature since it
becomes an eigenvalue problem if the linear constraint CTv=b is removed. We start by
transforming CRQopt into an equivalent optimization problem (LGopt) of minimiz-
ing the Lagrangian multiplier of CRQopt, and then into another equivalent problem
(QEPmin) of finding the smallest eigenvalue of a quadratic eigenvalue problem. Al-
though these equivalences have been discussed in literature, it appears to be the first
time that they are rigorously justified in this paper. In the second part, we present
numerical algorithms for solving LGopt and QEPmin based on Krylov subspace pro-
jection. The basic idea is to first project LGopt and QEPmin onto Krylov subspaces to
yield problems of the same types but of much smaller sizes, and then solve the reduced
problems by direct methods, which is either a secular equation solver (in the case of
LGopt) or an eigensolver (in the case of QEPmin). We provide convergence analy-
sis for the proposed algorithms and present error bounds. The sharpness of the error
bounds is demonstrated by examples, although in applications the algorithms often
converge much faster than the bounds suggest. Finally, we apply the new algorithms
to semi-supervised learning in the context of constrained clustering.
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1 Introduction

In this paper, we are concerned with the following linear constrained Rayleigh quotient
(CRQ) optimization:

min v' Av, (1.1a)
CRQopt: st.olo=1, (1.1b)
Clo=b, (1.1¢)

where AcR"*" is symmetric, CeR"*™ has full column rank, and beIR". Necessarily m<n
but often m «n. We are particularly interested in the case where A is large and sparse and
b#0.

CRQopt (1.1) is also known as the constrained eigenvalue problem, a term coined in
1989 [10]. However, it had appeared in literature much earlier than that [15]. In that
sense, CRQopt is a classical problem. However, past studies are fragmented with some
claims, although often true, not rigorously justified or needed conditions to hold. In this
paper, our goal is to provide a thorough investigation into this classical problem, includ-
ing rigorous justifications of statements previously taken for granted in literature and
addressing the theoretical subtleties that were not paid attention to. We also present a
quantitative convergence analysis for the Krylov type subspace projection method, which
we will also call the Lanczos algorithm, for solving large scale CRQopt (1.1).

1.1 Related works

CRQopt (1.1) has found a wide range of applications, such as ridge regression [5, 12],
trust-region subproblem [27, 33], constrained least square problem [9], spectral image
segmentation [6,36], transductive learning [19], and community detection [28].

The first systematic study of CRQopt (1.1) belongs to Gander, Golub and von Matt
[10]. Using the full QR and eigen-decompositions, they reformulated CRQopt (1.1) as an
optimization problem of finding the minimal Lagrangian multiplier via solving a secu-
lar equation (in a way that is different from our secular equation solver in Appendix A).
Alternatively, they also turned CRQopt (1.1) into an optimization problem of finding the
smallest real eigenvalue of a quadratic eigenvalue problem (QEP). However, the equiv-
alence between the QEP optimization and the Lagrangian multiplier problem was not
rigorously justified in [10].

Numerical algorithms proposed in [10] are not suitable for large scale CRQopt (1.1)
because they require a full eigen-decomposition of A. Later in [14], Golub, Zhang and
Zha considered large and sparse CRQopt (1.1) but only with the homogeneous constraint,
i.e, b=0. In this special case, CRQopt (1.1) is equivalent to computing the smallest eigen-
value of A restricted to the null space of CT. An inner-outer iterative Lanczos method was
proposed to solve the homogeneous CRQopt (1.1). In [41], Xu, Li and Schuurmans pro-
posed a projected power method for solving CRQopt (1.1). The projected power method
is an iterative method only involving matrix-vector products, and thus it is suitable for



