Two Optimal Inequalities Related to the Sándor-Yang Type Mean and One-parameter Mean

Yang Yue-Ying ${ }^{1}$ and Qian Wei-mao ${ }^{2}$
(1. Mechanic Electronic and Automobile Engineering College, Huzhou Vocational \& Technical College, Huzhou, Zhejiang, 313000)
(2. School of Distance Education, Huzhou Broadcast and TV University, Huzhou, Zhejiang, 313000)
\section*{Communicated by Ji You-qing}

Abstract

In this paper, we establish two optimal the double inequalities for SándorYang type mean and one-parameter mean.

Key words: Sándor-Yang type mean, p-th one-parameter mean, Neuman-Sándor mean, second Seiffert mean, inequality
2010 MR subject classification: 26E60, 26D20
Document code: A
Article ID: 1674-5647(2016)04-0352-07
DOI: 10.13447/j.1674-5647.2016.04.07

1 Introduction

Let $p, q \in \mathbf{R}$ and $a, b>0$ with $a \neq b$. The Stolarsky means $S_{p, q}(a, b)$ were defined by Stolarsky ${ }^{[1]}$ as

$$
S_{p, q}(a, b)= \begin{cases}\left(\frac{q\left(a^{p}-b^{p}\right)}{p\left(a^{q}-b^{q}\right)}\right)^{\frac{1}{p-q}} & \text { if } p \neq q, p q \neq 0 ; \\ \left(\frac{a^{p}-b^{p}}{p(\ln a-\ln b)}\right)^{\frac{1}{p}} & \text { if } p \neq 0, q=0 ; \tag{1.1}\\ \left(\frac{a^{q}-b^{q}}{q(\ln a-\ln b)}\right)^{\frac{1}{q}} & \text { if } p=0, q \neq 0 ; \\ \exp \left\{\frac{a^{p} \ln a-b^{p} \ln b}{a^{p}-b^{p}}-\frac{1}{p}\right\} & \text { if } p=q \neq 0 ; \\ \sqrt{a b} & \text { if } p=q=0 .\end{cases}
$$

[^0]It is well known that the Stolarsky means $S_{p, q}(a, b)$ are continuous and strictly increasing with respect to $p, q \in \mathbf{R}$ and $a, b>0$, and include many famous means, for example, $S_{1,0}(a, b)=L(a, b)$ is the logarithmic mean, $S_{1,1}(a, b)=I(a, b)$ is the identric (exponential) mean, $S_{2,1}(a, b)=A(a, b)$ is the arithmetic mean, $S_{\frac{3}{2}, \frac{1}{2}}(a, b)=H e(a, b)$ is the Heronian mean,

$$
S_{2 p, p}(a, b):=M_{p}(a, b)= \begin{cases}\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}} & \text { if } p \neq 0 \\ \sqrt{a b} & \text { if } p=0\end{cases}
$$

is the p-th power mean of a and b, while

$$
S_{p+1, p}(a, b):=J_{p}(a, b)= \begin{cases}\frac{p}{p+1} \cdot \frac{a^{p+1}-b^{p+1}}{a^{p}-b^{p}} & \text { if } p(p+1) \neq 0 ; \\ \frac{a-b}{\ln a-\ln b} & \text { if } p=0 ; \\ \frac{a b(\ln a-\ln b)}{a-b} & \text { if } p=-1\end{cases}
$$ is called the p th one-parameter mean of a and b.

The Schwab-Borchardt mean $S B(a, b)$ of two positive real numbers a and b is defined by

$$
S B(a, b)= \begin{cases}\frac{\sqrt{b^{2}-a^{2}}}{\arccos \left(\frac{a}{b}\right)} & \text { if } a<b ; \\ \frac{\sqrt{a^{2}-b^{2}}}{\cosh ^{-1}\left(\frac{a}{b}\right)} & \text { if } a>b\end{cases}
$$

(see [2]-[4]). It is known that the Schwab-Borchardt mean $S B(a, b)$ is also strictly increasing in both a and b, nonsymmetric and homogeneous of degree one with respect to a and b. Many symmetric bivariate means values are the special cases of the Schwab-Borchardt mean. For instance,

$$
P(a, b)=\frac{a-b}{2 \arcsin \frac{a-b}{a+b}}=S B[G(a, b), A(a, b)]
$$

is the first Seiffert mean,

$$
T(a, b)=\frac{a-b}{2 \arctan \frac{a-b}{a+b}}=S B[A(a, b), Q(a, b)]
$$

is the second Seiffert mean,

$$
N S(a, b)=\frac{a-b}{2 \sinh ^{-1} \frac{a-b}{a+b}}=S B[Q(a, b), A(a, b)]
$$

is the Neuman-Sándor mean, and the logarithmic mean $L(a, b)$ can be rewritten as

$$
L(a, b)=\frac{a-b}{2 \tanh ^{-1} \frac{a-b}{a+b}}=S B[A(a, b), G(a, b)]
$$

where $Q(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}$ is the quadratic mean. Then it is easy to see that the inequalities

[^0]: Received date: Sept. 25, 2015.
 Foundation item: The NSF (LY13A010004) of Zhejiang Province and the NSF (XKT-15G17) of Zhejiang Broadcast and TV University.

 E-mail address: 919404713@qq.com (Yang Y Y).

