L_p -centroid Bodies and Its Characterizations

Ma Tong-yi and Zhang De-yan

(College of Mathematics and Statistics, Hexi University, Zhangye, Gansu, 734000)

Communicated by Rong Xiao-chun

Abstract: In this paper, we study the characteristic properties for L_p -centroid bodies, and an improved version of Busemann-Petty problem for L_p -centroid bodies is obtained. In addition, using the definitions of L_p -pole curvature image and L_p -affine surface area, a new proof of Busemann-Petty problem for L_p -centroid bodies is given.

Key words: convex body, star body, centroid body, L_p -centroid body, Busemann-

Petty problem

2010 MR subject classification: 52A40, 52A20

Document code: A

Article ID: 1674-5647(2015)04-0333-12 **DOI:** 10.13447/j.1674-5647.2015.04.05

1 Introduction

The concept of classic centroid body was first proposed by Blaschke and Dupin (see [1]), and was defined by $\operatorname{Petty}^{[2]}$. Lutwak and $\operatorname{Zhang}^{[3]}$ introduced the concept of L_p -centroid body. For each convex subset in \mathbf{R}^n , it is well-known that there is a unique ellipsoid with the following property: The moment of inertia of the ellipsoid and the moment of inertia of the convex set are the same about every 1-dimensional subspace of \mathbf{R}^n . This ellipsoid is called the Lengendre ellipsoid of the convex set. Namely, L_2 -centroid body $\Gamma_2 K$. The Lengendre ellipsoid and its polar (the Binet ellipsoid) are well-known concepts from classical mechanics.

As usual, V(K) denotes the *n*-dimensional volume of a body K in Euclidean space \mathbb{R}^n . Let S^{n-1} denote the unit sphere in \mathbb{R}^n . Let B denote the centered (centrally symmetric with respect to the origin) unit ball in \mathbb{R}^n , and we write $\omega_n = V(B)$ for its volume.

The definition of the classic centroid body was introduced by $Petty^{[2]}$: Let K be a star body (about the origin) in \mathbb{R}^n . Then the classic centroid body, ΓK , of K is the origin-

Received date: Feb. 21, 2014.

Foundation item: The NSF (11161019, 11371224) of China and the STP (145RJZG227) of Gansu.

E-mail address: matongyi@126.com (Ma T Y).

symmetric convex body whose support function is given by

$$h_{\Gamma K}(\boldsymbol{u}) = \frac{1}{V(K)} \int_{K} |\boldsymbol{u} \cdot \boldsymbol{x}| d\boldsymbol{x}, \qquad \boldsymbol{u} \in S^{n-1},$$

where $x \cdot y$ denotes the standard inner product of vectors x and y in \mathbb{R}^n .

The classic centroid body is an important concept in convex geometry analysis. About the research of classic centroid body, $Petty^{[4]}$, $Lutwak^{[5-7]}$ and $Zhang^{[8-10]}$ have made plentiful and substantial achievements.

In 1997, Lutwak and Zhang^[3] introduced the notion of L_p -centroid body, which extend the concept of the classical centroid body. Let K be a star body (about the origin) in \mathbf{R}^n and $p \geq 1$. Then the L_p -centroid body, $\Gamma_p K$, of K is the origin-symmetric convex body whose support function is given by

$$h_{\Gamma_p K}(\boldsymbol{u}) = \frac{1}{c_{n,p} V(K)} \int_K |\boldsymbol{u} \cdot \boldsymbol{x}|^p d\boldsymbol{x}, \qquad \boldsymbol{u} \in S^{n-1},$$
(1.1)

where

$$c_{n,p} = \frac{\omega_{n+p}}{\omega_2 \omega_n \omega_{p-1}}, \qquad \omega_n = \frac{\pi^{n/2}}{\Gamma(1+n/2)}.$$

By using polar coordinate transformation in (1.1), we can obtain

$$h_{\Gamma_p K}^p(\boldsymbol{u}) = \frac{1}{(n+p)c_{n,p}V(K)} \int_{S^{n-1}} |\boldsymbol{u} \cdot \boldsymbol{v}|^p \rho_K^{n+p}(\boldsymbol{v}) dS(\boldsymbol{v}), \qquad \boldsymbol{u} \in S^{n-1}.$$
 (1.2)

For set of the palar bodies of all L_p -projection bodies, we define the following:

 $\Pi_p^* = \{\Pi_p^* Q : Q \subset \mathbf{R}^n \text{ is the any convex body containing origin in their interiors}\},$ where $\Pi_p^* Q$ denotes the polar body of L_p -projection body $\Pi_p Q$. The following results are equivalent:

- (i) $L \in \Pi_n^*$;
- (ii) $(\mathbf{R}^n, ||\cdot||_L)$ is isometric to a subspace of L_p .

The latter fact can be found in [11].

Concerning the operator Γ_p , a well-known Shephard problem can be stated as follows: Let K, L be two origin-symmetric convex bodies in \mathbf{R}^n and suppose that, for every $p \geq 1$, $\Gamma_p K \subseteq \Gamma_p L$, does it follow that we have an inequality for the volumes of K and L?

The premier solution of this problem was given by Grinberg and Zhang^[12]. Their results are described as follows:

Theorem 1.1 Let K be a star body (about the origin) in \mathbf{R}^n , $L \in \Pi_p^*$, and $p \geq 1$. If $\Gamma_p K \subseteq \Gamma_p L$, then

$$V(K) \le V(L)$$

with equality for $n \neq p \geq 1$ if and only if K = L.

On the other hand, if $K \notin \Pi_p^*$, then there is a body L such that $\Gamma_p K \subseteq \Gamma_p L$, but V(K) > V(L).

In this paper, we further study the characteristic properties of L_p -centroid bodies. First, we give the following result for L_p -centroid bodies.