COMMUNICATIONS IN MATHEMATICAL RESEARCH **30**(3)(2014), 257–264

Boundedness for Commutators of Approximate Identities on Weighted Morrey Spaces

ZHANG LEI, ZHENG QING-YU AND SHI SHAO-GUANG (School of Sciences, Linyi University, Linyi, Shandong, 276005)

Communicated by Ji You-ging

Abstract: The aim of this paper is to set up the weighted norm inequalities for commutators generated by approximate identities from weighted Lebesgue spaces into weighted Morrey spaces.

Key words: approximate identity, weighted Morrey space, weighted BMO space, commutator

2010 MR subject classification: 42B20, 42B25

Document code: A

Article ID: 1674-5647(2014)03-0257-08 **DOI:** 10.13447/j.1674-5647.2014.03.07

1 Introduction

Suppose that $\varphi \in L^1(\mathbf{R}^n)$, $f \in L^p(\mathbf{R}^n)$ $(1 \le p < \infty)$ and $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\varepsilon^{-1} x)$ for all $\varepsilon > 0$. If the operator

$$T_{\omega} f(x) = f \star \varphi_{\varepsilon}(x) \Longrightarrow f$$

then as $\varepsilon \to 0$, φ_{ε} is called the kernel of approximate identities on $L^p(\mathbf{R}^n)$, and T_{φ} is called the operator of approximate identities. If φ_{ε} further satisfies

$$|\varphi(x-y) - \varphi(x)| \le \frac{|y|}{|x|^{n+1}}, \qquad |x| > 2|y|,$$
 (1.1)

Francia et al.^[1] have proved that T_{φ} is bounded from $L^{p}(\mathbf{R}^{n})$ into $L^{p}(\mathbf{R}^{n})$ with 1 .Recall the definitions of Muckenhoupt classes (see [2]):

$$A_p : \sup_{B} \left(\frac{1}{|B|} \int_{B} w(x) dx \right) \left(\frac{1}{|B|} \int_{B} w(x)^{1-p'} dx \right)^{p-1} \le C, \qquad 1
$$A_1 : Mw(x) \le Cw(x);$$$$

Received date: Jan. 26, 2012.

Foundation item: This work was partially supported by the NSF (11271175) of China and the NSF (ZR2012AQ026) of Shandong Province.

^{*} Corresponding author.

E-mail address: zhanglei-0335@163.com (Zhang L), shishaoguang@lyu.edu.cn (Shi S G).

$$A_{\infty} = \bigcup_{p>1} A_p.$$

Here B denotes any ball in \mathbb{R}^n , $\frac{1}{p} + \frac{1}{p'} = 1$ and M is the Hardy-littlewood maximal function:

$$Mf(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y)| \mathrm{d}y.$$

For a measure ν , we say $w(x) \in A_p(\nu)$ if

$$\sup_{B} \left(\frac{1}{\nu(B)} \int_{B} w d\nu \right) \left(\frac{1}{\nu(B)} \int_{B} w^{1-p'} d\nu \right)^{p-1} \le C, \qquad 1
$$A_{\infty}(\nu) = \bigcup_{n \ge 1} A_{p}(\nu),$$$$

where $\nu(B) = \int_{B} \nu$. Here and subsequently, C denotes a positive constant which may vary from line to line but will remain independent of the relevant quantities.

For $w \in A_p$, the weighted BMO space is defined by

$$BMO(w) = \left\{ b : ||b||_{BMO(w)} = \frac{1}{w(B)} \int_{B} |b(x) - b_B| dx < \infty \right\},\,$$

where $b_B = \frac{1}{|B|} \int_B b(x) dx$. Then the commutators generated by T_{φ} and $b \in BMO(w)$ can be written as

$$T_{\varphi,b}f(x) = b(x)T_{\varphi}f(x) - T_{\varphi}(bf)(x).$$

For $b \in \text{BMO}(w)$, under the same conditions as that in [1], Segovia and Torrea^[3] have established the boundedness of commutator $T_{\varphi,b}$ from $L^p(w_1)$ into $L^p(w_2)$ with $1 , <math>w_1, w_2 \in A_p$ and $w^p = \frac{w_1}{w_2}$.

To investigate the local behavior of solutions to the second order elliptic partial differential equations, Morrey^[4] first introduced the classical Morrey space $M_{p,q}(\mathbf{R}^n)$ with the norm

$$||f||_{M_{p,q}(\mathbf{R}^n)} = \sup_{B \subset \mathbf{R}^n} \left(\frac{1}{|B|^{1-\frac{p}{q}}} \int_B |f(x)|^p dx \right)^{\frac{1}{p}},$$

where $f \in L^p_{\text{loc}}(\mathbf{R}^n)$ and $1 \le p \le q < \infty$.

For some earlier work on $M_{p,q}(\mathbf{R}^n)$, see, e.g., [5–6]. For a recent account of the theory on the general case of $M_{p,q}(\mathbf{R}^n)$, we refer the reader to [7–9]. $M_{p,q}(\mathbf{R}^n)$ is a natural expansion of $L^p(\mathbf{R}^n)$ in the sense that $M_{p,p}(\mathbf{R}^n) = L^p(\mathbf{R}^n)$.

Komori and Shirai^[10] introduced the weighted Morrey space, which is a natural generalization of the weighted Lebesgue space. Let $1 \le p < q < \infty$ and w_1 , w_2 be two functions. Then the norm of the weighted Morrey space $M_{p,q}(w_1, w_2)$ is defined by

$$||f||_{M_{p,q}(w_1, w_2)} = \sup_{B \subset \mathbf{R}^n} \left(\frac{1}{(w_2(B))^{\frac{1-p}{q}}} \int_B |f(x)|^p w_1(x) dx \right)^{\frac{1}{p}} < \infty.$$

If $w_1 = w_2 = w$, we denote $M_{p,q}(w_1, w_2) = M_{p,q}(w)$. It is obvious that $M_{p,0}(w) = L^p(w)$ and $M_{p,1}(w) = L^{\infty}(w)$.

Inspired by [3, 10], we establish the weighted estimates for $T_{\varphi,b}$ on $M_{p,k}(w)$.