The Closed Subsemigroups of a Clifford Semigroup

FU YIN-YIN AND ZHAO XIAN-ZHONG

(College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, 330022)

Communicated by Du Xian-kun

Abstract: In this paper we study the closed subsemigroups of a Clifford semigroup. It is shown that $\left\{\bigcup_{\alpha\in\overline{Y'}}G_{\alpha} \mid Y'\in P(Y)\right\}$ is the set of all closed subsemigroups of a Clifford semigroup $S = [Y; G_{\alpha}; \phi_{\alpha,\beta}]$, where $\overline{Y'}$ denotes the subsemilattice of Y generated by Y'. In particular, G is the only closed subsemigroup of itself for a group G and each one of subsemilattices of a semilattice is closed. Also, it is shown that the semiring $\overline{P}(S)$ is isomorphic to the semiring $\overline{P}(Y)$ for a Clifford semigroup $S = [Y; G_{\alpha}; \phi_{\alpha,\beta}]$.

Key words: semilattice, closed subsemigroup, Clifford semigroup 2010 MR subject classification: 16Y60, 20M07 Document code: A Article ID: 1674-5647(2014)02-0097-09 DOI: 10.13447/j.1674-5647.2014.02.01

1 Introduction

By a semiring we mean a type (2,2) algebra $(S, +, \cdot)$ satisfying the following identities:

- (SR1) $x + (y+z) \approx (x+y) + z;$
- (SR2) $x(yz) \approx (xy)z;$
- (SR3) $x(y+z) \approx xy + xz, (x+y)z = xz + yz.$

The power semiring of a semigroup S and the closed subsemigroups of S are introduced and studied by Zhao^[1]. By studying of the power semiring of an idempotent semigroup Sand the closed subsemigroups of an idempotent semigroup S, in [2–3], Pastijn *et al.* obtained the lattice of all subvarieties of the variety consisting of the semirings S for which (S, +) is a semilattice and (S, \cdot) is an idempotent semigroup (the concepts of lattices and varieties

Received date: April 9, 2011.

Foundation item: The NSF (2010GZS0093) of Jiangxi Province.

E-mail address: 469261217@qq.com (Fu Y Y).

are introduced in [4]). This lattice is distributive and contains 78 varieties precisely. Each of those is finitely based and generated by a finite number of finite ordered bands.

Let S be a semigroup and P(S) the set of all nonempty subsets of S. For $A, B \in P(S)$, we define

$$A \circ B = \{ab \mid a \in A, b \in B\}.$$

Then $(P(S), \cup, \circ)$ becomes a semiring, which is called the power semiring of S. A subsemigroup C of a semigroup S is said to be closed (see [1]) if

$$at, sbt \in C \Rightarrow sabt \in C$$

holds for all $a, b \in S$, $s, t \in S^1$. The set of all closed subsemigroups of S is denoted by $\overline{P}(S)$.

Let S be a semigroup and A a nonempty subset of S. \overline{A} denotes the closed subsemigroup of S generated by A, i.e., the smallest closed subsemigroup of S containing A. Define inductively (see [1]) sets $A^{(i)}$ $(i \ge 1)$ as follows: $A^{(1)}$ is the subsemigroup of S generated by A; for any $i \ge 1$, $A^{(i+1)}$ is the subsemigroup of S generated by the set

 $\begin{array}{c} A^{(i)}\bigcup\{scdt\mid sct,sdt\in A^{(i)},\ c,d\in S,\ s,t\in S^1\}.\\ \text{Zhao}^{[1]} \text{ proved that }\overline{A}=\bigcup_{i\geq 1}A^{(i)}. \end{array}$

s

Let S be a semigroup and $\overline{P}(S)$ the set of all closed subsemigroups of S. Then $\overline{P}(S)$ becomes a semiring equipped with the addition and the multiplication as follows:

$$A + B = \overline{A \cup B}, \qquad AB = \overline{A \circ B}$$

Also, it is easy to see that the mapping

$$\tau: P(S) \longrightarrow \overline{P}(S), \qquad A \longmapsto \overline{A}$$

is a semiring homomorphism. The kernel of τ was written as ρ in [1]. That is to say,

$$A\rho B \Leftrightarrow \overline{A} = \overline{B}, \qquad A, B \in \overline{P}(S).$$

Clifford^[5] introduced Clifford semigroups which play an important role in the theory of semigroups. In this paper we study the closed subsemigroups of a Clifford semigroup. It is shown that $\left\{\bigcup_{\alpha\in\overline{Y'}}G_{\alpha} \mid Y'\in P(Y)\right\}$ is the set of all closed subsemigroups of a Clifford semigroup $S = [Y; G_{\alpha}; \phi_{\alpha,\beta}]$, where $\overline{Y'}$ denotes the subsemilattice of Y generated by Y'. In particular, G is the only closed subsemigroup of itself for a group G and each one of subsemilattices of a semilattice is closed. Also, it is shown that the semiring $\overline{P}(S)$ is isomorphic to the semiring $\overline{P}(Y)$ for a Clifford semigroup $S = [Y; G_{\alpha}; \phi_{\alpha,\beta}]$.

2 Closed Subsemigroup

Theorem 2.1 Let G be a group and 1 the identity element of G. Then $\overline{A} = G, \qquad A \in P(G).$

Proof. We first prove that $\overline{\{1\}} = G$. It is obvious that $\overline{\{1\}} \subseteq G$. Also, since $1 = 1aa^{-1} \in \overline{\{1\}}$ for any $a \in G$, we have $a = 1aaa^{-1} \in \overline{\{1\}}$ by the definition of closed subsemigroups. That is to say, $G \subseteq \overline{\{1\}}$. So it follows that $\overline{\{1\}} = G$.