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1 Introduction and Main Results

Consider the second-order system






























d

dt
(|u̇1(t)|

q−2u̇1(t)) = ∇u1
F (t, u1(t), u2(t)),

d

dt
(|u̇2(t)|

p−2u̇2(t)) = ∇u2
F (t, u1(t), u2(t)),

u1(0) = u1(T ), u̇1(0) = u̇1(T ),

u2(0) = u1(T ), u̇2(0) = u̇2(T ),

(1.1)

where T > 0, 1 < q, p < ∞, and F : [0, T ] × R
N × R

N → R
1 satisfies the following

assumptions:

(A) F is measurable in t for each (x1, x2) ∈ R
N × R

N , continuously differentiable in

(x1, x2) for t ∈ [0, T ] a.e. and there exist a1, a2 ∈ C(R+,R+) and b ∈ L1(0, T ;R+) such

that

|F (t, x1, x2)| + |∇x1
F (t, x1, x2)| + |∇x2

F (t, x1, x2)| ≤ (a1(|x1|) + a2(|x2|))b(t)

for all (x1, x2) ∈ R
N × R

N and t ∈ [0, T ] a.e.
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Denote by 〈 · , · 〉 and | · | the inner product and the norm of R
n, respectively. The

corresponding functional ϕ : W → R given by

ϕ(u1, u2) =
1

q

∫ T

0

|u̇1|
qdt +

1

p

∫ T

0

|u̇2|
pdt +

∫ T

0

F (t, u1(t), u2(t))dt

is continuously differentiable on W and

〈ϕ′(u1, u2), (v1, v2)〉 =

∫ T

0

[(|u̇1(t)|
q−2u̇1(t), v̇1) + (∇x1

F (t, u1, u2), v1)]dt

+

∫ T

0

[(|u̇2(t)|
p−2u̇2(t), v̇2) + (∇x2

F (t, u1, u2), v2)]dt (1.2)

for all (u1, u2), (v1, v2) ∈ W , where

W = W
1,q
T × W

1,p
T

is a reflexive Banach space with the norm

‖(u1, u2)‖W = ‖u1‖W
1,q

T

+ ‖u2‖W
1,p

T

.

Moreover, the solutions of the problem (1.1) correspond to the critical points of ϕ (see [1–2]).

For each u ∈ W
1,p

T , it can be written as

u(t) = ū + ũ(t),

where

ū =
1

T

∫ T

0

u(t)dt,

∫ T

0

ũ(t)dt = 0.

Then we have Sobolev’s ineuqality (see [3]):

‖ũ‖∞ ≤ C1‖u̇‖q, ‖ṽ‖∞ ≤ C1‖v̇‖p, u ∈ W
1,q

T , v ∈ W
1,p

T ,

and Wirtinger’s inequality (see [3]):

‖ũ‖q ≤ C2‖u̇‖q, ‖ṽ‖p ≤ C2‖v̇‖p, u ∈ W
1,q

T , v ∈ W
1,p

T

for some positive constants C1 and C2, where

‖u‖p =
(

∫ T

0

|u(t)|pdt
)

1

p

,

‖u‖∞ = max
t∈[0,T ]

|u(t)|.

The existence of periodic solutions of second-order systems has been extensively studied

and a lot of important existence results have been obtained, for example, see [4–6] and

the references therein. There are also some papers (see [7–9]) on the periodic solutions of

second-order systems with a p-Laplacian, in which a lot of results on Hamiltonian systems

are generalized.

Paşca and Tang[1] proved the existence results for the problem (1.1). In this paper we

continue to consider the problem (1.1) with some new solvability conditions by using the

least action principle and saddle point theorem.

We state the main results of this paper:

Theorem 1.1 Let q′ and p′ be positive constants such that
1

q
+

1

p′
= 1,

1

q
+

1

q′
= 1.


