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Abstract: This paper investigates the properties of solutions to a quasilinear parabolic

system with nonlocal boundary conditions and localized sources. Conditions for the

existence of global or blow-up solutions are given. Global blow-up property and blow-

up rate estimates are also derived.
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1 Introduction

In this paper, we consider the positive classical solutions to the porous medium system with

nonlocal boundary conditions and localized sources

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ut = ∆um + avp(x0, t), x ∈ Ω , t > 0,

vt = ∆vn + buq(x0, t), x ∈ Ω , t > 0,

u(x, t) =

∫

Ω

k1(x, y)u(y, t)dy, x ∈ ∂Ω , t > 0,

v(x, t) =

∫

Ω

k2(x, y)v(y, t)dy, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω ,

(1.1)

where m, n > 1, a, b, p, q > 0 are constants, Ω is a bounded domain in R
N (N ≥ 1) with

smooth boundary ∂Ω , k1(x, y), k2(x, y) 6≡ 0 are nonnegative continuous functions defined

for x ∈ ∂Ω and y ∈ Ω̄ , while u0(x), v0(x) are positive continuous functions and satisfy the

compatibility conditions

u0(x) =

∫

Ω

k1(x, y)u0(y)dy
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and

v0(x) =

∫

Ω

k2(x, y)v0(y)dy

for x ∈ ∂Ω .

The properties of solutions to partial differential equations with local boundary condi-

tions have been discussed in [1] and [2]. However, there are some important phenomena

formulated into parabolic equations which are coupled with nonlocal boundary conditions

in mathematical modelling such as thermoelasticity theory (see [3]–[5]). In this case, the

solution u(x, t) describes entropy per volume of material.

The parabolic problem with nonlocal boundary condition of the type

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ut = ∆u + g(x, u), x ∈ Ω , t > 0,

u(x, t) =

∫

Ω

k(x, y)u(y, t)dy, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), x ∈ Ω ,

(1.2)

was studied by Friedman[6]. He established the global existence of its solution, and showed

that the unique solution tends to 0 monotonically and exponentially as t→ +∞ in the case

of

g(x, u) = c(x)u

with c(x) ≤ 0 and
∫

Ω

|k(x, y)|dy < 1, x ∈ ∂Ω .

In 1992, Deng[7] gave the comparison principle and local existence of classical solutions to

(1.2) with general g(x, u). For the case

g(x, u) = c(x)u,

he showed that the solution exists globally and may increase at most exponentially with t

under some weaker assumptions than those in [6]. Blow-up results of (1.2) are due to Seo[8].

He investigated (1.2) with

g(x, u) = g(u)

and gave the blow-up condition of positive solutions by using supersolution and subsolution

method. The blow-up rate estimates for the special case

g(u) = up

and

g(u) = eu

were also derived.

A more general problem with nonlocal boundary conditions was investigated by Pao[9,10],

where the following problem






















ut = Lu+ g(x, u), x ∈ Ω , t > 0,

Bu =

∫

Ω

k(x, y)u(y, t)dy, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), x ∈ Ω

(1.3)


