Projections, Birkhoff Orthogonality and Angles in Normed Spaces^{*}

CHEN ZHI-ZHI^{1,2}, LIN WEI¹ AND LUO LÜ-LIN¹

(1. Institute of Mathematics, Jilin University, Changchun, 130012)

(2. Institute of Statistics, Jilin University of Finance and Economics, Changchun, 130017)

Communicated by Ji You-qing

Abstract: Let X be a Minkowski plane, i.e., a real two dimensional normed linear space. We use projections to give a definition of the angle $A_q(x, y)$ between two vectors x and y in X, such that x is Birkhoff orthogonal to y if and only if $A_q(x, y) = \frac{\pi}{2}$. Some other properties of this angle are also discussed. Key words: projection, norm, Birkhoff orthogonality, angle, Minkowski plane, duality 2000 MR subject classification: 46B20 Document code: A Article ID: 1674-5647(2011)04-0378-07

1 Introduction and Preliminaries

In the research of geometry in inner spaces, orthogonality plays a very important role. In general normed spaces, many new orthogonalities have been introduced, such as Birkhoff orthogonality in [1], isosceles orthogonality in [2] and so on. These definitions of orthogonalities are different, and their relations were discussed in [3]. In 1993, Milicic^[4] introduced g-orthogonality in normed spaces via Gateaux derivatives. In [5], it is shown that the angle $A(\boldsymbol{x}, \boldsymbol{y})$ in X satisfies the basic properties. In [6] and [7], there are more about the geometry of Minkowski plane. James^[8] gave a result of Birkhoff orthogonality in l_2^{∞} .

Birkhoff orthogonality was introduced by Birkhoff^[1] in 1935, which is the first notion of orthogonality in normed spaces.

Definition 1.1 Let x and y be two vectors in a normed space X. x is said to be Birkhoff orthogonal to y, denoted by $x \perp_B y$, if for any $t \in \mathbf{R}$

$$\|\boldsymbol{x} + t\boldsymbol{y}\| \ge \|\boldsymbol{x}\|.$$

In 1993, Milicic^[4] introduced g-orthogonality in normed spaces via Gateaux derivatives. In fact, one has the notion of g-angle related to g-orthogonality.

^{*}Received date: May 24, 2011.

Definition 1.2 The functional $g: X^2 \to \mathbf{R}$ is defined by

$$g(x, y) = \frac{1}{2} ||x|| (\tau_+(x, y) + \tau_-(x, y)),$$

where

$$\tau_{\pm}(\boldsymbol{x}, \boldsymbol{y}) = \lim_{t \to \pm 0} \frac{\|\boldsymbol{x} + t\boldsymbol{y}\| - \|\boldsymbol{x}\|}{t}.$$

The g-angle between two vectors \boldsymbol{x} and \boldsymbol{y} , denoted by $A_g(\boldsymbol{x}, \ \boldsymbol{y})$, is given by

$$A_g(\boldsymbol{x}, \ \boldsymbol{y}) = \arccos rac{g(\boldsymbol{x}, \ \boldsymbol{y})}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}$$

Furthermore, \boldsymbol{x} is said to be g-orthogonal to \boldsymbol{y} , denoted by $\boldsymbol{x} \perp_{g} \boldsymbol{y}$, if

$$g(\boldsymbol{x}, \boldsymbol{y}) = 0,$$

i.e.,

$$A_g(\boldsymbol{x}, \boldsymbol{y}) = \frac{\pi}{2}.$$

In an inner product space $(X, \langle \cdot, \cdot \rangle)$, the angle $A(\boldsymbol{x}, \boldsymbol{y})$ between two nonzero vectors \boldsymbol{x} and \boldsymbol{y} in X is usually given by

$$A(\boldsymbol{x}, \boldsymbol{y}) = \arccos \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|},$$

where $\|\boldsymbol{x}\| = \langle \boldsymbol{x}, \boldsymbol{y} \rangle^{1/2}$ denotes the induced norm in X. One may observe that the angle $A(\boldsymbol{x}, \boldsymbol{y})$ in X satisfies the following basic properties (see [5]):

 \diamond Parallelism: $A(\boldsymbol{x}, \boldsymbol{y}) = 0$ if and only if \boldsymbol{x} and \boldsymbol{y} are of the same direction; $A(\boldsymbol{x}, \boldsymbol{y}) = \pi$ if and only if \boldsymbol{x} and \boldsymbol{y} are of opposite direction.

 $\diamond \text{ Symmetry: } A(\boldsymbol{x}, \boldsymbol{y}) = A(\boldsymbol{y}, \boldsymbol{x}) \text{ for every } \boldsymbol{x}, \boldsymbol{y} \in X.$

 \diamond Homogeneity:

$$A(a\boldsymbol{x}, b\boldsymbol{y}) = \begin{cases} A(\boldsymbol{x}, \boldsymbol{y}), & ab > 0; \\ \pi - A(\boldsymbol{x}, \boldsymbol{y}), & ab < 0. \end{cases}$$

 $\diamond \text{ Continuity: If } \boldsymbol{x}_n \to \boldsymbol{x} \text{ and } \boldsymbol{y}_n \to \boldsymbol{y} \text{ (in norm), then } A(\boldsymbol{x}_n, \ \boldsymbol{y}_n) \to A(\boldsymbol{x}, \ \boldsymbol{y}).$

The g-angle is identical with the usual angle in an inner space and has the following properties:

(I) Part of parallelism property: If x and y are of the same direction, then

$$A_g(\boldsymbol{x}, \boldsymbol{y}) = 0;$$

if \boldsymbol{x} and \boldsymbol{y} are of opposite direction, then

$$A_g(\boldsymbol{x}, \boldsymbol{y}) = \pi.$$

(II) Part of homogeneity property:

$$A_{q}(a\boldsymbol{x}, b\boldsymbol{y}) = A_{q}(\boldsymbol{x}, \boldsymbol{y}), \qquad \boldsymbol{x}, \boldsymbol{y} \in X, \ a, b \in \mathbf{R};$$

(III) Homogeneity property:

$$A_g(aoldsymbol{x},\ boldsymbol{y}) = \left\{egin{array}{cc} A_g(oldsymbol{x},\ oldsymbol{y}), & ab > 0; \ \pi - A_g(oldsymbol{x},\ oldsymbol{y}), & ab < 0. \end{array}
ight.$$

(IV) Part of continuity property: If $\boldsymbol{y}_n \to \boldsymbol{y}$ (in norm), then $A_g(\boldsymbol{x}, \boldsymbol{y}_n) \to A_g(\boldsymbol{x}, \boldsymbol{y})$.

However, g-orthogonality is not equivalent to Birkhoff orthogonality. In this article, we use projections to give a definition of the angle $A_q(\boldsymbol{x}, \boldsymbol{y})$ between two vectors \boldsymbol{x} and \boldsymbol{y} such that \boldsymbol{x} is Birkhoff orthogonal to \boldsymbol{y} if and only if

$$A_q(\boldsymbol{x}, \ \boldsymbol{y}) = \frac{\pi}{2}.$$