Projections, Birkhoff Orthogonality and Angles in Normed Spaces*

Chen Zhi-Zhi ${ }^{1,2}$, Lin Wei ${ }^{1}$ and Luo LÜ-Lin ${ }^{1}$
(1. Institute of Mathematics, Jilin University, Changchun, 130012)
(2. Institute of Statistics, Jilin University of Finance and Economics, Changchun, 130017)

Communicated by Ji You-qing

Abstract

Let X be a Minkowski plane, i.e., a real two dimensional normed linear space. We use projections to give a definition of the angle $A_{q}(\boldsymbol{x}, \boldsymbol{y})$ between two vectors \boldsymbol{x} and \boldsymbol{y} in X, such that \boldsymbol{x} is Birkhoff orthogonal to \boldsymbol{y} if and only if $A_{q}(\boldsymbol{x}, \boldsymbol{y})=\frac{\pi}{2}$. Some other properties of this angle are also discussed.

Key words: projection, norm, Birkhoff orthogonality, angle, Minkowski plane, duality
2000 MR subject classification: 46B20
Document code: A
Article ID: 1674-5647(2011)04-0378-07

1 Introduction and Preliminaries

In the research of geometry in inner spaces, orthogonality plays a very important role. In general normed spaces, many new orthogonalities have been introduced, such as Birkhoff orthogonality in [1], isosceles orthogonality in [2] and so on. These definitions of orthogonalities are different, and their relations were discussed in [3]. In 1993, Milicic ${ }^{[4]}$ introduced g-orthogonality in normed spaces via Gateaux derivatives. In [5], it is shown that the angle $A(\boldsymbol{x}, \boldsymbol{y})$ in X satisfies the basic properties. In [6] and [7], there are more about the geometry of Minkowski plane. James ${ }^{[8]}$ gave a result of Birkhoff orthogonality in l_{2}^{∞}.

Birkhoff orthogonality was introduced by Birkhoff ${ }^{[1]}$ in 1935, which is the first notion of orthogonality in normed spaces.

Definition 1.1 Let \boldsymbol{x} and \boldsymbol{y} be two vectors in a normed space X. \boldsymbol{x} is said to be Birkhoff orthogonal to \boldsymbol{y}, denoted by $\boldsymbol{x} \perp_{B} \boldsymbol{y}$, if for any $t \in \mathbf{R}$

$$
\|\boldsymbol{x}+t \boldsymbol{y}\| \geq\|\boldsymbol{x}\|
$$

In 1993, Milicic ${ }^{[4]}$ introduced g-orthogonality in normed spaces via Gateaux derivatives. In fact, one has the notion of g -angle related to g -orthogonality.

[^0]Definition 1.2 The functional $g: X^{2} \rightarrow \mathbf{R}$ is defined by

$$
g(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{2}\|\boldsymbol{x}\|\left(\tau_{+}(\boldsymbol{x}, \boldsymbol{y})+\tau_{-}(\boldsymbol{x}, \boldsymbol{y})\right)
$$

where

$$
\tau_{ \pm}(\boldsymbol{x}, \boldsymbol{y})=\lim _{t \rightarrow \pm 0} \frac{\|\boldsymbol{x}+t \boldsymbol{y}\|-\|\boldsymbol{x}\|}{t}
$$

The g-angle between two vectors \boldsymbol{x} and \boldsymbol{y}, denoted by $A_{g}(\boldsymbol{x}, \boldsymbol{y})$, is given by

$$
A_{g}(\boldsymbol{x}, \boldsymbol{y})=\arccos \frac{g(\boldsymbol{x}, \boldsymbol{y})}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|}
$$

Furthermore, \boldsymbol{x} is said to be g-orthogonal to \boldsymbol{y}, denoted by $\boldsymbol{x} \perp_{g} \boldsymbol{y}$, if

$$
g(\boldsymbol{x}, \boldsymbol{y})=0
$$

i.e.,

$$
A_{g}(\boldsymbol{x}, \boldsymbol{y})=\frac{\pi}{2}
$$

In an inner product space $(X,\langle\cdot, \cdot\rangle)$, the angle $A(\boldsymbol{x}, \boldsymbol{y})$ between two nonzero vectors \boldsymbol{x} and \boldsymbol{y} in X is usually given by

$$
A(\boldsymbol{x}, \boldsymbol{y})=\arccos \frac{\langle\boldsymbol{x}, \boldsymbol{y}\rangle}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|}
$$

where $\|\boldsymbol{x}\|=\langle\boldsymbol{x}, \boldsymbol{y}\rangle^{1 / 2}$ denotes the induced norm in X. One may observe that the angle $A(\boldsymbol{x}, \boldsymbol{y})$ in X satisfies the following basic properties (see [5]):
\diamond Parallelism: $A(\boldsymbol{x}, \boldsymbol{y})=0$ if and only if \boldsymbol{x} and \boldsymbol{y} are of the same direction; $A(\boldsymbol{x}, \boldsymbol{y})=\pi$ if and only if \boldsymbol{x} and \boldsymbol{y} are of opposite direction.
\diamond Symmetry: $A(\boldsymbol{x}, \boldsymbol{y})=A(\boldsymbol{y}, \boldsymbol{x})$ for every $\boldsymbol{x}, \boldsymbol{y} \in X$.
\diamond Homogeneity:

$$
A(a \boldsymbol{x}, b \boldsymbol{y})= \begin{cases}A(\boldsymbol{x}, \boldsymbol{y}), & a b>0 \\ \pi-A(\boldsymbol{x}, \boldsymbol{y}), & a b<0\end{cases}
$$

\diamond Continuity: If $\boldsymbol{x}_{n} \rightarrow \boldsymbol{x}$ and $\boldsymbol{y}_{n} \rightarrow \boldsymbol{y}$ (in norm), then $A\left(\boldsymbol{x}_{n}, \boldsymbol{y}_{n}\right) \rightarrow A(\boldsymbol{x}, \boldsymbol{y})$.
The g-angle is identical with the usual angle in an inner space and has the following properties:
(I) Part of parallelism property: If \boldsymbol{x} and \boldsymbol{y} are of the same direction, then

$$
A_{g}(\boldsymbol{x}, \boldsymbol{y})=0
$$

if \boldsymbol{x} and \boldsymbol{y} are of opposite direction, then

$$
A_{g}(\boldsymbol{x}, \boldsymbol{y})=\pi
$$

(II) Part of homogeneity property:

$$
A_{g}(a \boldsymbol{x}, b \boldsymbol{y})=A_{g}(\boldsymbol{x}, \boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in X, a, b \in \mathbf{R}
$$

(III) Homogeneity property:

$$
A_{g}(a \boldsymbol{x}, b \boldsymbol{y})= \begin{cases}A_{g}(\boldsymbol{x}, \boldsymbol{y}), & a b>0 \\ \pi-A_{g}(\boldsymbol{x}, \boldsymbol{y}), & a b<0\end{cases}
$$

(IV) Part of continuity property: If $\boldsymbol{y}_{n} \rightarrow \boldsymbol{y}$ (in norm), then $A_{g}\left(\boldsymbol{x}, \boldsymbol{y}_{n}\right) \rightarrow A_{g}(\boldsymbol{x}, \boldsymbol{y})$.

However, g-orthogonality is not equivalent to Birkhoff orthogonality. In this article, we use projections to give a definition of the angle $A_{q}(\boldsymbol{x}, \boldsymbol{y})$ between two vectors \boldsymbol{x} and \boldsymbol{y} such that \boldsymbol{x} is Birkhoff orthogonal to \boldsymbol{y} if and only if

$$
A_{q}(\boldsymbol{x}, \boldsymbol{y})=\frac{\pi}{2}
$$

[^0]: *Received date: May 24, 2011.

