The $L(3,2,1)$-labeling on Bipartite Graphs*

Yuan Wan-Lian ${ }^{1}$, Zhai Ming-qing ${ }^{1,2}$ and Lü Chang- Hong 2
(1. Department of Mathematics, Chuzhou University, Chuzhou, Anhui, 239012)
(2. Department of Mathematics, East China Normal University, Shanghai, 200241)

Communicated by Liu Jian-ya

Abstract

An $L(3,2,1)$-labeling of a graph G is a function from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(u)-f(v)| \geq 3$ if $d_{G}(u, v)=1$, $|f(u)-f(v)| \geq 2$ if $d_{G}(u, v)=2$, and $|f(u)-f(v)| \geq 1$ if $d_{G}(u, v)=3$. The $L(3,2,1)$-labeling problem is to find the smallest number $\lambda_{3}(G)$ such that there exists an $L(3,2,1)$-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ_{3} for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that $\lambda_{3}(T)$ attains the minimum value.

Key words: channel assignment problems, $L(2,1)$-labeling, $L(3,2,1)$-labeling, bipartite graph, tree
2000 MR subject classification: 68R10, 05C15
Document code: A
Article ID: 1674-5647(2009)01-0079-09

1 Introduction

The problem of vertex labeling with a condition at distance two arises from the channel assignment problem introduced by Hale ${ }^{[1]}$. For a given graph G, an $L(2,1)$-labeling is defined as a function

$$
f: V(G) \rightarrow\{0,1,2, \cdots\}
$$

such that

$$
|f(u)-f(v)| \geq \begin{cases}2, & d_{G}(u, v)=1 \\ 1, & d_{G}(u, v)=2\end{cases}
$$

where $d_{G}(u, v)$, the distance between u and v, is the minimum length of a path between u and v. A k - $L(2,1)$-labeling is an $L(2,1)$-labeling such that no integer is greater than k. The $L(2,1)$-labeling number of G, denoted by $\lambda(G)$, is the smallest number k such that G has a

[^0]k - $L(2,1)$-labeling. The $L(2,1)$-labeling problem has been extensively studied in recent years (see [2]-[9]).

Shao and Liu ${ }^{[10]}$ extend $L(2,1)$-labeling problem to $L(3,2,1)$-labeling problem. For a given graph G, a $k-L(3,2,1)$-labeling is defined as a function

$$
f: V(G) \rightarrow\{0,1,2, \cdots k\}
$$

such that

$$
|f(u)-f(v)| \geq 4-d_{G}(u, v), \quad d_{G}(u, v) \in\{1,2,3\}
$$

The $L(3,2,1)$-labeling number of G, denoted by $\lambda_{3}(G)$, is the smallest number k such that G has a k - $L(3,2,1)$-labeling. Clearly,

$$
\lambda_{3}(G) \geq 2 \Delta(G)+1
$$

for any non-empty graph G. It was showed that

$$
\lambda_{3}(G) \leq \Delta^{3}+2 \Delta
$$

for any graph G and

$$
\lambda_{3}(T) \leq 2 \Delta+3
$$

for any tree T (see [11]). This paper focuses on bipartite graphs. In Section 2, we obtain some bounds of λ_{3} for bipartite graphs and its subclasses, where the bound for bipartite graphs is $O\left(\Delta^{2}\right)$. In Section 3 we provide a best possible condition for a tree T with $\Delta(T) \geq 5$ and such that $\lambda_{3}(T)$ attains the minimum value, that is, $\lambda_{3}(T)=2 \Delta+1$ if the distance between any two vertices of maximum degree is not in $\{2,4,6\}$.

All graphs considered here are non-empty, undirected, finite, simple graphs. For a graph G, we denote its vertex set, edge set and maximum degree by $V(G), E(G)$ and $\Delta(G)$, respectively. For a vertex $v \in V(G)$, let

$$
N_{G}^{k}(v)=\left\{u \mid d_{G}(u, v)=k\right\}, \quad N_{G}[v]=N_{G}(v) \cup\{v\},
$$

and $d_{G}(v)$ be the degree of v in G. A vertex of degree k is called a k-vertex. Especially, a 1 -vertex of a tree is called a leaf or a pendant vertex. Let

$$
D_{\Delta}(G)=\left\{d_{G}(u, v) \mid u, v \text { are two } \Delta \text {-vertices }\right\} .
$$

If there are no confusions in the context, we use $V, \Delta, \lambda_{3}, N^{k}(v), N[v], d(v), d(u, v)$ and D_{Δ} to denote $V(G), \Delta(G), \lambda_{3}(G), N_{G}^{k}(v), N_{G}[v], d_{G}(v), d_{G}(u, v)$ and $D_{\Delta}(G)$, respectively. And we use k-labeling to denote k - $L(3,2,1)$-labeling.

2 Bounds of λ_{3} on Bipartite Graphs

First, we summarize some easy observations into the following lemma.
Lemma 2.1 For any graph G,
(i) if $\lambda_{3}=2 \Delta+1$ and f is a $(2 \Delta+1)$-labeling, then $f(u) \in\{0,2 \Delta+1\}$ for any Δ-vertex u;
(ii) if f is a k-labeling of G, then $k-f$ is a k-labeling of G;
(iii) if G is connected and its diameter $d \in\{1,2,3\}$, then $\lambda_{3} \geq(|V|-1)(4-d)$.

[^0]: *Received date: June 17, 2008.
 Foundation item: The NSF (60673048) of China and the NSF (KJ2009B002 , KJ2009B237Z) of Education Ministry of Anhui Province.

