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1 Introduction

The topological pressure and variational principle for additive condition was first presented
by Ruellel!]. These notions together with equilibrium states play an important role in statis-
tic mechanics, ergodic theory and dynamical systems (see [2]-[4]). For non-additive case,
Falconerl® conducted the subadditive variational principle on mixing repellers, Barreiral6l
introduced the non-additive variational principle on an arbitrary subset of compact met-
ric space under a mild condition. In [7], Barreira established a variational principle on
the repeller for almost additive sequences and discussed the existence and uniqueness of
equilibrium and Gibbs measures. Feng developed a variational principle for a sequence of
functions on a subshift of finite type in the context of multifractal formalism associated to
iterated function systems with overlaps (see [8] and [9]). Murmmert!*?! gave the variational
principle under some assumption for the toplogical pressure defined on a subset of compact
metric space for an almost additive sequence. Caol'!! defined the topological pressure for
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subadditive sequence and set up a variational principle without any additional assumptions.

In recent years, the pre-image structure of a map has been studied by many authors
(see [12]-[17]). Fiebig et al.['! studied the relation between the classical topological entropy
and the dispersion of pre-images. Cheng and Newhousel'” defined the pre-image entropies
which are similar to the standard notions of topological and measurable entropies. They

obtain a variational principle for entropy which is much more like the one in classical case.

Zeng™8l presented the notion of pre-image pressure and investigated the relationship with
invariant measures. A variational principle for pre-image pressure is also established there,
which generalized Cheng’s result to pre-image pressure.

In this paper, we present the sub-additive version of pre-image pressure and the corre-
sponding variational principle. We generalize Zeng’s results to sub-additive situation. In

fact, we set up a variational principle between the sub-additive pre-image pressure, the
pre-image entropy and some functions about invariant measure which like the Lyapunove

exponents. Our restricted condition is very weak. We only assume that the pre-image pres-
sure is not —oo. As to the case of —oo, the defined pre-image pressure is tightly relative
to the condition @*(u) = —oo for all invariant measure . The method we used is still in
the frame of Misiurewicz’s elegant proof (see [19]), which has been used by many authors
(see [20]). Both Ledrappier’s method for proving relative variational principle (see [20]) and
Cao’s technique for arguing subadditive variational principle (see [11]) are used in the argu-
ment of our theorem. It should be pointed out that our approach is different from Zeng’s
for additive case (see [18]) and Cheng’s for pre-image entropy (see [17]) in the part 1 of the
proof.

This paper is organized as follows. In Section 2, we give the preliminary, which involves
the definitions of pre-image entropy and subadditive pre-image pressure and a lemma. In
Section 3, we state and prove the subadditive pre-image variational principle after proposing

a needed lemma.

2 Preliminaries

Let (X,d) denote a compact metric space with metric d. Let B be the Borel g-algebra of
X and let M(X) be the collection of all probability measures defined on the measurable
space (X,B). Let f: X — X be a continuous map on X and let M (X, f) be the sets of
f-invariant Borel probability measures. Obviously, M(X, f) C M(X).

Set

B~ = ﬁ f"B.
n=0

For any finite partition a, H,(a™|B~) (see [21]) is a non-negative subadditive sequence for
uw € M(X, f), where

n—1

o = \/ f~a.
i=0



