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Abstract. In this paper, we reveal a mechanism behind a false accuracy verification
encountered with unstructured-grid schemes based on solution reconstruction such
as UMUSCL. Third- (or higher-) order of accuracy has been reported for the Euler
equations in the literature, but UMUSCL is actually second-order accurate at best for
nonlinear equations. False high-order convergence occurs generally for a scheme that
is high order for linear equations but second-order for nonlinear equations. It is caused
by unexpected linearization of a target nonlinear equation due to too small of a pertur-
bation added to an exact solution used for accuracy verification. To clarify the mecha-
nism, we begin with a proof that the UMUSCL scheme is third-order accurate only for
linear equations. Then, we derive a condition under which the third-order truncation
error dominates the second-order error and demonstrate it numerically for Burgers’
equation. Similar results are shown for the Euler equations, which disprove some
accuracy verification results in the literature. To be genuinely third-order, UMUSCL
must be implemented with flux reconstruction.
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1 Introduction

This paper is a sequel to the two previous papers [1, 2], where we clarified the MUSCL
and QUICK schemes towards the clarification of economical high-order unstructured-
grid schemes for practical computational fluid dynamics (CFD) solvers, e.g., third-order
UMUSCL with κ=1/2 [3], κ=1/3 [4, 5], or κ=0 [6, 7]. In this paper, we will clarify one
more confusion: the false accuracy verification of the UMUSCL scheme.

The UMUSCL scheme of Burg [3] is generally considered as an unstructured-grid
extension of Van Leer’s κ-reconstruction scheme [4, 5] and has been widely employed in
practical CFD solvers [8–20] with a confusion over the value of κ for giving third-order
accuracy on regular or one-dimensional grids: κ = 1/2 [3], κ = 1/3 [4, 5], or κ =−1/6
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[10, 13]. The confusion arises mainly from taking different combinations of numerical
solution and discretization types : numerical solutions stored as point-valued or cell-
averaged solutions; discretizations of a differential form of a conservation law at a point
(finite-difference) or of an integral form over a cell (finite-volume). For example, Burg
originally proposed the UMUSCL scheme as a finite-volume scheme with point-valued
numerical solutions stored at nodes on an unstructured grid [3]. Note that we know he
used point-valued numerical solutions because that is the only way he could obtain third-
order accuracy with κ = 1/2 for a one-dimensional nonlinear system (see Refs. [1, 2] for
details). This is already confusing because the MUSCL scheme is based on cell-averaged
numerical solutions, not point-valued solutions (see Ref. [1]). As clarified in the previous
paper [2], a third-order finite-volume scheme with point-valued numerical solutions is
nothing but the QUICK scheme and therefore the UMUSCL scheme should have been
called the UQUICK scheme. In fact, third-order accuracy with κ=1/2, which is true for
the QUICK scheme, has been confirmed for a one-dimensional steady conservation law
by Burg [3] (see also Ref. [2]). Third-order accuracy demonstrated by Burg is genuine but
only for one-dimensional problems; it cannot be third-order in multi-dimensions even
for Cartesian grids unless the flux is integrated over a face by a high-order quadrature
formula.

To be even more confusing, in many or perhaps all practical unstructured-grid codes,
the UMUSCL scheme is implemented not as a finite-volume scheme but as a point-wise
scheme with the time derivative and source/forcing terms evaluated at a solution point
(a node or a cell center) [10, 11, 13–15, 18]. In this paper, we will focus on this partic-
ular implementation. We will call it simply the UMUSCL scheme but it should not be
confused with Burg’s finite-volume UMUSCL scheme. Then, the fact that the scheme
has been shown to achieve up to fourth-order accuracy with a single flux evaluation per
face on Cartesian grids [10, 13–15] indicates that the scheme is actually a finite-difference
scheme, approximating the differential form of a target equation at a solution point. Note
that it does not matter how the discretization is derived; the resulting discretization must
be high-order as a finite-difference scheme, not as a finite-volume scheme because the
time derivative and source/forcing terms are not integrated with high-order quadrature
over a cell. Therefore, the UMUSCL scheme corresponds to neither the MUSCL scheme
nor the QUICK scheme and does not achieve high-order accuracy in the same way as the
MUSCL scheme does. As we will show, the UMUSCL scheme is third-order accurate for
linear equations with κ=1/3, but only second-order accurate when applied to nonlinear
conservation laws. This feature is common to conservative finite-difference schemes with
a flux evaluated with reconstructed solutions as in MUSCL (e.g., those in Refs. [21, 22]).
Hence, high-order verification results reported in the literature for the UMUSCL scheme
applied to the Euler equations are misleading and/or misinterpreted. To be genuinely
third- or higher-order accurate, it is necessary to directly reconstruct the flux as pointed
out for somewhat similar schemes in Ref. [23, 24]. In other words, the UMUSCL scheme
of Refs. [10,13,14] can be easily made third- or higher-order by direct flux reconstruction.

It is worth pointing out that a similar unstructured-grid MUSCL scheme had already


