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Abstract. Along with fruitful applications of Deep Neural Networks (DNNs) to re-
alistic problems, recently, empirical studies reported a universal phenomenon of Fre-
quency Principle (F-Principle), that is, a DNN tends to learn a target function from
low to high frequencies during the training. The F-Principle has been very useful in
providing both qualitative and quantitative understandings of DNNs. In this paper,
we rigorously investigate the F-Principle for the training dynamics of a general DNN
at three stages: initial stage, intermediate stage, and final stage. For each stage, a the-
orem is provided in terms of proper quantities characterizing the F-Principle. Our
results are general in the sense that they work for multilayer networks with general
activation functions, population densities of data, and a large class of loss functions.
Our work lays a theoretical foundation of the F-Principle for a better understanding of
the training process of DNNs.
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1 Introduction

Deep learning has achieved great success as in many fields [15], e.g., speech recognition
[1], object recognition [10], natural language processing [35] and computer game control
[21]. It has also been adopted into algorithms to solve scientific computing problems [8,
11,12,14]. In principle, the universal approximation theorem states that a commonly-used
Deep Neural Network (DNN) of sufficiently large width can approximate any function to
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a desired precision [7]. However, it remains a mystery that how a DNN finds a minimum
corresponding to such an approximation through the gradient-based training process. To
understand the learning behavior of DNNs for the approximation problem, recent works
model the gradient flow of parameters in a two-layer ReLU neural networks by a partial
differential equation (PDE) in the mean-field limit [19, 25, 26]. However, it is not clear
whether this PDE approach, which describes a neural network of one hidden layer of
infinite width, can be extended to general DNNs of multiple hidden layers and limited
neuron number. For further discussion on the mathematical understanding of DNNs, we
refer the readers to a review article [9].

In this work, we take another approach that uses Fourier analysis to study the learn-
ing behavior of DNNs based on the phenomenon of Frequency Principle (F-Principle),
i.e., a DNN tends to learn a target function from low to high frequencies during the train-
ing [23, 31, 32, 36]. Empirically, the F-Principle can be widely observed in general DNNs
for both benchmark and synthetic data [31, 32]. Conceptually, it provides a qualitative
explanation of the success and failure of DNNs [32]. E et al., (2019) [30] propose a contin-
uous viewpoint for studying machine learning and suggest that the F-Principle under-
lying the gradient flows may be a main reason behind the success of modern machine
learning. Empirically, the F-Principle provides us a perspective for quantifying the train-
ing process via the convergence of each frequency component [13, 22, 29, 33]. For exam-
ple, it is used as an important phenomenon to pursue fundamentally different learning
trajectories of meta-learning [22] and provides an understanding of why increasing the
depth of a neural network may accelerate the training [33]. The F-Principle also provides
important theoretical insights to design DNN-based algorithms [2, 3, 5, 16, 17, 20, 27, 28].
For example, Blind et al. [3] designs a loss function with explicit higher priority for high
frequencies to significantly accelerate the simulation of fluid dynamics through DNN ap-
proach; MscaleDNN [16, 17, 28] is developed to accelerate the fitting of high frequency
functions by shifting or rescaling high frequencies to lower ones. These works have sig-
nified the importance of the F-Principle. Theoretically, Xu et al. [32] propose a theorem
for the characterization of the initial training stage of a two-layer tanh network, which
is also adopted in the analysis of DNNs with ReLU activation function [23]. Another
series of works [4, 6, 24, 34, 36] attempt to understand the F-Principle in very wide neu-
ral networks, which can be well approximated by the first-order expansion with respect
to the network parameters (the linear neural tangent kernel (NTK) regime). The stud-
ies [6, 24, 34] from the perspective of eigen-decomposition of DNN dynamics in spatial
domain require assumptions of very large network width and infinite samples. To study
the F-Principle with finite samples, Zhang et al. [36] and Luo et al. [18] study the dynam-
ics in the frequency domain and further obtain an effective model of linear F-Principle dy-
namics, which accurately predicts the learning results of two-layer ReLU neural networks
of large widths, leads to an apriori estimate of the generalization error bound. However,
the explanation of DNN’s F-Principle beyond the NTK regime (non-linear regime) is still
missing.

Following the same direction as in [32], in this work, we propose a theoretical frame-


