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Abstract. Random projections are able to perform dimension reduction efficiently for
datasets with nonlinear low-dimensional structures. One well-known example is that
random matrices embed sparse vectors into a low-dimensional subspace nearly iso-
metrically, known as the restricted isometric property in compressed sensing. In this
paper, we explore some applications of random projections in deep neural networks.
We provide the expressive power of fully connected neural networks when the input
data are sparse vectors or form a low-dimensional smooth manifold. We prove that the
number of neurons required for approximating a Lipschitz function with a prescribed
precision depends on the sparsity or the dimension of the manifold and weakly on the
dimension of the input vector. The key in our proof is that random projections em-
bed stably the set of sparse vectors or a low-dimensional smooth manifold into a low-
dimensional subspace. Based on this fact, we also propose some new neural network
models, where at each layer the input is first projected onto a low-dimensional sub-
space by a random projection and then the standard linear connection and non-linear
activation are applied. In this way, the number of parameters in neural networks is
significantly reduced, and therefore the training of neural networks can be accelerated
without too much performance loss.
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1 Introduction

Over the past few years, learning via multiple-layer neural network has been widely
studied and has achieved unprecedented success. It has many important applications in
image recognition, speech recognition, and natural language processing.

One of the fundamental theoretical question in deep learning is the expressive power
of a neural network, which describes its ability to approximate functions. The celebrated
universal approximation theorem, which was proved by Cybenko [10], Hornick [17] et
al., Funahashi [15] and Barron [3], states that sufficiently large shallow (that is, depth-
2 or equivalently, one hidden layer) neural networks can approximate any continuous
function on a bounded domain to arbitrary accuracy. But, with a fixed approximation ac-
curacy, the required size of such networks can be exponentially increasing with respect to
the dimension. Indeed, Eldan and Shamir [11] proved that there is a continuous function
expressed by a small depth-3 feedforward neural networks which cannot be approxi-
mated by any shallow network to more than a certain constant accuracy, unless its width
grows exponentially in the dimension. This shows the power of depth for feedforward
neural network. Lu-Pu-Wang-Hu-Wang [19] studied the expressive power of neural net-
works from the width point of view. They shown that there exists a class of width-O(k2)
shallow ReLU network that cannot be approximated by any width-O(k1.5) and depth-k
neural network.

However, the data input in the real world applications are usually structured. For ex-
ample, images modelled as piecewise smooth functions can have sparse representations
under certain orthonormal bases or frames [21]. This means that the intrinsic dimension
of the input data is significantly smaller than the ambient space dimension. This fact is
often ignored in aforementioned classical approximation results. The expressive power
of a neural network may be improved by exploring the structure of the input data. In
this direction, Shaham-Cloninger-Coifman [31] studied approximations of functions on
a smooth k-dimensional submanifold embedded in R

d. They constructed a depth-4 net-
work and controlled the error of its approximation, where the size of their network de-
pends on k but just weakly on d. Chui-Lin-Zhou [9] studied the expressive power of
neural networks in the regression setting when the samples are located approximately
on some unknown manifold. They showed that the error of the approximation of their
trained depth-3 neural network to the regression function depends on the number of
samples, and the dimension of the manifold instead of the ambient dimension.

In this paper, we consider a different approach to analyze the theoretical performance
of neural networks with structured input data. Based on our analysis, we propose a new
architecture of neural networks, for which the training can be significantly accelerated
compared to conventional fully connected or convolutional neural networks. Our main
idea is to use linear random projections developed in compressed sensing [14].

For simplicity, we assume that the input data are sparse vectors, namely, k-sparse
vectors in R

d. Using the theory of compressed sensing, one can construct a random
projection onto an O(klog(d/k))-dimensional space that satisfies the so-called restricted


