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Abstract. In this paper we present how nonlinear stochastic Itô differential equations
arising in the modelling of perturbed rigid bodies can be solved numerically in such
a way that the solution evolves on the correct manifold. To this end, we formulate an
approach based on Runge-Kutta–Munthe-Kaas (RKMK) schemes for ordinary differ-
ential equations on manifolds.

Moreover, we provide a proof of the mean-square convergence of this stochastic
version of the RKMK schemes applied to the rigid body problem and illustrate the
effectiveness of our proposed schemes by demonstrating the structure preservation of
the stochastic RKMK schemes in contrast to the stochastic Runge-Kutta methods.
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1 Introduction

We consider the nonlinear Itô stochastic differential equation (SDE) of the form

dyt =

(
F0(yt)+

1
2

m

∑
i=1

F′i (yt)Fi(yt)

)
dt+

m

∑
i=1

Fi(yt)dW i
t , y0∈M, (1.1)

where the solution yt, t≥0, evolves on an n-dimensional, homogeneous submanifoldM
of RN , Fi : M→ TM for i = 0,··· ,m and W1

t ,··· ,Wm
t are independent Wiener processes.

A solution can be locally defined via yt =Λ(exp(Ωt),y0), where Λ : G×M→M is a Lie
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group action onM, i.e., for two elements y1,y2∈M we can find a matrix G, an element
of the Lie group G, such that Λ(G,y1)=y2.

The variable Ωt is an element of the corresponding Lie algebra g, which is the tangent
space at the identity e of G, i.e., g=TG|e. It satisfies

dΩt =At dt+
m

∑
i=1

Γ(i)
t dW i

t , Ω0=0, (1.2)

where the coefficients At,Γ
(i)
t ∈ g depend on the coefficients of Eq. (1.1), Fi : M→ TM,

i=0,··· ,m. We refer to [6] for more details on a general representation of these coefficients
and these SDEs. A specific representation for the caseM=S2 can be found in Section 2.

Our aim is to exploit the Euclidean-like geometry of the Lie algebra by applying
stochastic Runge-Kutta (sRK) schemes to Eq. (1.2) and projecting the numerical solu-
tion back onto the manifoldM to express an approximation of the solution of the SDE
Eq. (1.1) since a direct application of sRK schemes to Eq. (1.1) would result in a drift-off.
This approach is based on the Runge-Kutta–Munthe-Kaas (RKMK) schemes for ordinary
differential equations (ODEs) on manifolds [11]. Their application to rigid body equa-
tions has been analyzed in [2].

Stochastic extensions of RKMK methods and their proof of convergence have already
been considered in [1, 6, 10, 12]. The authors of [6] focus on the convergence of the expo-
nential Lie series, while the authors of [1] consider only weak convergence. The proof
of convergence in [12] applies only to the Euler-Maruyama scheme on matrix Lie groups
and the proof of strong convergence in [10] is restricted to linear SDEs on matrix Lie
groups which occur for example in the approximation of correlation matrices [9].

In this paper we extend the idea of Munthe-Kaas to SDEs on homogeneous manifolds
and give a proof of the mean-square convergence of stochastic Runge-Kutta–Munthe-
Kaas (sRKMK) schemes for nonlinear Itô SDEs of the form Eq. (1.1) occurring in the mod-
elling of perturbed rigid bodies. We will show that the mean-square order of convergence
γ depends on the order of convergence of the applied sRK method in the Lie algebra and
the truncation index in the series representation of the drift and diffusion coefficients of
Eq. (1.2).

The structure of the paper is as follows. In Section 2 we formulate based on the de-
terministic case the SDE that describes the motion of a rigid body that is perturbed by
stochastic processes. Then, in Section 3 we present the schemes to solve this SDE numer-
ically such that the numerical solution evolves on the correct manifold. The results of
simulating the rigid body problem are provided in Section 4. At last, a conclusion of our
findings and an outlook are given in Section 5.

2 The stochastic rigid body problem

Let M be the n-sphere Sn = {y∈Rn+1 : y>y= 1}. Then the Lie group action Λ, i.e., the
transport across this manifold, can be described via the matrix-vector product Λ(G,y)=


