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Abstract. It has been a fascinating topic in the study of boundary layer theory
about the well-posedness of Prandtl equation that was derived in 1904. Re-
cently, new ideas about cancellation to overcome the loss of tangential deriva-
tives were obtained so that Prandtl equation can be shown to be well-posed
in Sobolev spaces to avoid the use of Crocco transformation as in the classical
work of Oleinik. This short note aims to show that the cancellation mechanism
is in fact related to some intrinsic directional derivative that can be used to re-
cover the tangential derivative under some structural assumption on the fluid
near the boundary.
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1 Introduction

In 1904, Prandtl derived the famous equation to describe the fluid behaviour near
a boundary by resolving the difference between the viscous and the inviscid ef-
fects with no-slip boundary condition. This revolutionary result has vast appli-
cations in aerodynamics and other areas of engineering. It also provides a typical
mathematical model that attracts attention even now because a lot of mathemat-
ical problems remain unsolved. The key observation by Prandtl is that outside

∗Corresponding author. Email address: matyang@cityu.edu.hk (T. Yang)



346 T. Yang / Commun. Math. Anal. Appl., 1 (2022), pp. 345-354

a layer of thickness of
√

1/Re, convection dominates so that the flow is gov-
erned by the Euler equations; while inside a layer (boundary layer) of thickness
of

√
1/Re, convection and viscosity balance so that the flow is governed by the

Prandtl equations. Here Re is the Reynolds number.
Let us briefly recall the derivation of the Prandtl equation. Consider the in-

compressible Navier-Stokes equations over a flat boundary {(x,y)∈D,z=0} with
no-slip boundary condition,











∂tu
ǫ+(uǫ ·∇)uǫ+∇pǫ−ǫµ∆uǫ =0,

∇·uǫ=0,

uǫ|z=0=0,

where uǫ is the velocity field, pǫ represents the pressure and ǫµ is the viscosity
coefficient with ǫ being a small parameter. According to the Prandtl ansatz, set
uǫ=(uǫ,vǫ,wǫ)T with the following scaling:
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





uǫ(t,x,y,z)=u

(

t,x,y,
z√
ǫ

)

+o(1),

vǫ(t,x,y,z)=v

(

t,x,y,
z√
ǫ

)

+o(1),

wǫ(t,x,y,z)=
√

ǫw

(

t,x,y,
z√
ǫ

)

+o(
√

ǫ).

The leading order gives the following classical Prandtl equations:






















∂tu+(u∂x+v∂y+w∂z)u+∂x pE(t,x,y,0)=µ∂2
zu,

∂tv+(u∂x+v∂y+w∂z)v+∂y pE(t,x,y,0)=µ∂2
zv,

∂xu+∂yv+∂zw=0,

(u,v,w)|z=0=0, lim
z→+∞

(u,v)=
(

uE,vE
)

(t,x,y,0),

where the fast variable z/
√

ǫ is still denoted by z for simplicity of notation. And
the pressure and velocity of the outer flow denoted by pE(t,x,y) and uE=(uE,vE,0)
×(t,x,y) satisfy the Bernoulli’s law

∂tu
E+

(

uE ·∇
)

uE+∇pE =0.

For later presentation, we denote the Prandtl operator by

Pµ=∂t+u∂x+v∂y+w∂z−µ∂2
z

with a parameter µ in front of the dissipation in the normal direction.


